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Introduction

• Pattern recognition plays an important role in cognitive and decision-making 

tasks

• Pattern recognition methods have led to a series of breakthroughs

– Often surpassing human performance [Deng et al., 2009; Badia et al., 2020]

Deng et al. (2009). ImageNet: A Large-Scale Hierarchical Image Database. In CVPR.

Badia et al. (2020). Agent57: Outperforming the atari human benchmark. In ICML.
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Introduction

Convolutional Networks

• Visual pattern recognition models 

– Convolutional networks

– Large architectures (large circles) lead to better results 
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Introduction

Convolutional Networks

• Pruning approaches

– Locate and remove structures (i.e., filters or layers) from the architecture

• Existing criteria for pruning convolutional networks are ineffective since the 

accuracy of the original (unpruned) network is degraded

Original, unpruned, Network Pruning Neurons Pruning Layers
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Introduction

Convolutional Networks

• Neural Architecture Search (NAS)

– Automatically design efficient and accurate

• Current strategies analyze a large set of possible candidate architectures

– Require vast computational resources and take many days to process

Human-designed Automatically designed
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Introduction

Convolutional Networks

• HyperNets approaches 

– Explore early and deep layers to improve data representation

• HyperNets approaches insert time-consuming operations

Convolutional Network

Combination
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Introduction

Dimensionality Reduction

• Dimensionality reduction is able to yield discriminative representations 

besides reducing computational cost

• Partial Least Squares (PLS) has presented remarkable results

– Discriminative

– Robust to sample size problem (singularity)

– Operate as a feature selection method

𝑋 ∈ ℝ3 𝑋′ ∈ ℝ2

Dimensionality

Reduction

High-Dimensional Space

Low-Dimensional Space

(Latent Space)
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Introduction

Dimensionality Reduction

• Unfeasible for large datasets (e.g., ImageNet) since all the data need to be 

available in advance

– Memory constraints

• Incremental dimensionality reduction methods

– Find the latent space using a single data sample at a time

– Keep some properties of the traditional dimensionality reduction methods

• Most incremental Partial Least Squares are computationally inefficient and 

do not preserve all the properties of PLS



Hypotheses
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Hypothesis

• The importance of a structure composing the convolutional architecture 

can be effectively estimated using Partial Least Squares

• Our central hypothesis is that Partial Least Squares learns the importance 

inherent to predictive ability of the network
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Hypothesis

• The importance of a structure composing the convolutional architecture 

can be effectively estimated using Partial Least Squares

• We can remove neurons and layers from convolutional networks to 

decrease the computational cost

Original, unpruned, Network Network after Pruning
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Hypothesis

• The importance of a structure composing the convolutional architecture 

can be effectively estimated using Partial Least Squares

• We can insert structures to automatically design high-performance 

architectures

Automatically designed
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Hypothesis

Convolutional Network

Combination

• The importance of a structure composing the convolutional architecture 

can be effectively estimated using Partial Least Squares

• We can combine multiple levels of representation to improve data 

representation
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Hypothesis

𝑋 ∈ ℝ3 𝑋′ ∈ ℝ2

Incremental PLS

High Dimensional Space

Low Dimensional Space

(Latent Space)

• It is possible to compute all components of PLS incrementally using 

simple algebraic decomposition

– Low time complexity

– Preserves the proprieties of PLS across all components
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Summary

• Theoretical Concepts

• Pruning Approaches

– Pruning Filters

– Pruning Layers

• Neural Architecture Search

• HyperNet

• Incremental Partial Least Squares



Theoretical Concepts
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Theoretical Concepts

Partial Least Squares

• Find a projection matrix W(w1, w2, …wc) that projects the high dimensional 

(ℝm) space onto a low c-dimensional space (ℝc latent space)

– c ≪ m

𝑋 ∈ ℝm 𝑋′ ∈ ℝ𝑐

PLS



P
A

G
E

 1
8

Partial Least Squares

• Compute the component 𝑤𝑖 in terms of

– 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐶𝑂𝑉 𝑋𝑤, 𝑌 = 𝑋𝑇𝑌 ⇒ 𝑤𝑖 = 𝑋
𝑇𝑌

Theoretical Concepts

First component 𝑤1
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Theoretical Concepts

Variable Importance in Projection (VIP)

• VIP estimates the importance of each feature 𝑓𝑖 ∈ ℝ
𝑚

– PLS as a feature selection method

𝑋 ∈ ℝm 𝑋′ ∈ ℝ𝑐

PLS

𝑓 𝑚
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Summary

• Theoretical Concepts

• Pruning Approaches

– Pruning Filters

– Pruning Layers

• Neural Architecture Search

• HyperNet

• Incremental Partial Least Squares



Pruning Filters
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Problem Definition

Proposed Approach – Pruning Filters

• Identify and remove (red dashed squares) neurons that preserve as much 

accuracy as possible

Original, unpruned, Network Network after Pruning
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Pruning Filters

Proposed Approach – Pruning Filters

Convolutional Network

Layer 1 Layer 2

Feature Space

(High Dimensional)

Layer 3

Feature Vector

Feature Vector
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Overview

Filter

Representation

Dimensionality

Reduction (PLS)

Filter Importance

(VIP)

Prune and 

Fine-Tune

Repeat # Iterations

Proposed Approach – Pruning Filters



Experiments

Pruning Filters
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Applications and Datasets

• Activity Recognition 

– 5 - 21 classes

– Cross-validation

• Face Verification

– Two classes

– Cross-validation

• Image Classification

– 10 - 1,000 classes

– Hold-out

Labeled Faces in the Wild (LFW)

ImageNet

Experimental Setup
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Experimental Setup

• Parameter Assessment

– Validation set

• Convolutional Networks

– VGG16

– ResNets

• Computational Cost

– Number of Floating Point Operations (FLOPs)

• Statistical Test

– Paired t-test using 95% confidence

Experimental Setup



P
A

G
E

 2
8

Comparison with other Pruning Criteria

Experiments – Pruning Filters

• Pruning criteria

– ℓ1-Norm

– KL [Luo and Wu 2020]

– HRANK [Lin et al. 2020]

– ABS [Tan and Montani 2020]

• Feature selection techniques

– infFS [Roffo et al. 2015]

– ilFS [Roffo et al. 2017]

– infFSU [Roffo et al. 2020]

Roffo et al. (2015). Infinite feature selection. In ICCV.

Roffo et al. (2017). Infinite latent feature selection: A probabilistic latent graph-based ranking approach. In ICCV.

Roffo et al. (2020). Infinite feature selection: a graph-based feature filtering approach. In PAMI.

Luo and Wu (2020). Neural network pruning with residual-connections and limited-data. In CVPR.

Lin et al. (2020). Hrank: Filter pruning using high-rank feature map. In CVPR.

Tan and Montani (2020). Dropnet: Reducing neural network complexity via iterative pruning. In ICML.

Pre-trained

Architecture

Pruning

Criteria

Prune and

Fine-Tune
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Comparison with other Pruning Criteria

Filter Importance

Criteria

CIFAR-10

Acc. Drop↓

ImageNet (32x32)

Acc. Drop↓

ImageNet (224x224)

Acc. Drop↓

ℓ1-Norm -0.69 6.22 -0.62

infFS -0.69 6.31 -0.50

ilFS -0.65 6.04 -0.36

infFSU 0.48 6.30 -0.33

KL -0.59 6.37 -0.41

HRANK -0.84 6.70 -0.47

ABS -0.62 6.58 -0.42

PLS+VIP -0.89 5.81 -0.58

Experiments – Pruning Filters

• VGG16



P
A

G
E

 3
0

Comparison with other Pruning Approaches

• ResNet56 on CIFAR-10

Experiments – Pruning Filters

He et al.  (2018a). Soft filter pruning for accelerating deep convolutional neural networks. In CVPR.

He et al. (2020). Learning filter pruning criteria for deep convolutional neural networks acceleration. In CVPR

Chin et al. (2020). Towards efficient model compression via learned global ranking. In CVPR

Guo et al (2020). A unified framework for model compression. In CVPR.

Lin et al. (2020). Hrank: Filter pruning using high-rank feature map. In CVPR.
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Comparison with other Pruning Approaches

• ResNet50 on ImageNet (224x224)

Experiments – Pruning Filters

He et al. (2019b). Filter pruning via geometric median for deep convolutional neural networks acceleration. In CVPR.

Guo et al (2020). A unified framework for model compression. In CVPR.

He et al. (2020). Learning filter pruning criteria for deep convolutional neural networks acceleration. In CVPR

Luo and Wu (2020). Neural network pruning with residual-connections and limited-data. In CVPR.

Lin et al. (2020). Hrank: Filter pruning using high-rank feature map. In CVPR.
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Conclusions

• We demonstrate that is possible to remove unimportant, or least important, 

filters by estimating their importance using PLS

• Compared to existing criteria for determining filter importance, PLS 

achieves the lowest drop in accuracy

• Compared to state-of-the-art pruning approaches, our strategy for removing 

filters achieves one of the best trade-offs between FLOP reduction and 

accuracy drop

Pruning Filters
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Summary

• Theoretical Concepts

• Pruning Approaches

– Pruning Filters

– Pruning Layers

• Neural Architecture Search

• HyperNet

• Incremental Partial Least Squares



Pruning Layers
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Problem Definition

Proposed Approach – Pruning Layers

• Identify and remove (red dashed rectangles) layers that preserve as much 

accuracy as possible
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Pruning Layer

Proposed Approach – Pruning Layers
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Overview

Layer (module)

Representation

Dimensionality

Reduction (PLS)

Layer Importance

(VIP)

Prune and 

Fine-Tune

Repeat # Iterations

Proposed Approach – Pruning Layers



Experiments

Pruning Layers
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Comparison with other Pruning Criteria

Experiments – Pruning Layers

Roffo et al. (2015). Infinite feature selection. In ICCV.

Roffo et al. (2017). Infinite latent feature selection: A probabilistic latent graph-based ranking approach. In ICCV.

Roffo et al. (2020). Infinite feature selection: a graph-based feature filtering approach. In PAMI.

Luo and Wu (2020). Neural network pruning with residual-connections and limited-data. In CVPR.

Lin et al. (2020). Hrank: Filter pruning using high-rank feature map. In CVPR.

Tan and Montani (2020). Dropnet: Reducing neural network complexity via iterative pruning. In ICML.

Pre-trained

Architecture

Pruning

Criteria

Prune and

Fine-Tune

• Pruning criteria

– KL [Luo and Wu 2020]

– HRANK [Lin et al. 2020]

– ABS [Tan and Montani 2020]

• Feature selection techniques

– infFS [Roffo et al. 2015]

– ilFS [Roffo et al. 2017]

– infFSU [Roffo et al. 2020]



P
A

G
E

 4
0

Comparison with other Pruning Criteria

Layer Importance

Criteria

CIFAR-10

Acc. Drop↓

ImageNet (32x32)

Acc. Drop↓

ImageNet (224x224)

Acc. Drop↓

infFS -0.68 1.50 -2.03

ilFS -0.46 1.12 -2.11

infFSU -0.50 2.03 -2.03

KL -0.32 1.00 -2.06

HRANK -0.73 2.35 -2.03

ABS -0.54 0.96 -2.11

PLS+VIP -0.84 2.25 -1.92

Experiments – Pruning Layers

• ResNet56 (CIFAR and ImageNet 32x32) and ReNet50 (ImageNet 224x224)
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1.2

Comparison with other Pruning Approaches

• ResNet110 on CIFAR-10

Experiments – Pruning Layers

Veit et al. (2020). Convolutional networks with adaptive inference graphs. In IJCV.

Wu et al. (2018a). Blockdrop: Dynamic inference paths in residual networks. In CVPR.

Huang et al. (2018). Data-driven sparse structure selection for deep neural networks. In ECCV.
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Comparison with other Pruning Approaches

• ResNet50 on ImageNet 224x224

Experiments – Pruning Layers
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Veit et al. (2020). Convolutional networks with adaptive inference graphs. In IJCV.

Wu et al. (2018a). Blockdrop: Dynamic inference paths in residual networks. In CVPR.

Huang et al. (2018). Data-driven sparse structure selection for deep neural networks. In ECCV.
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Conclusions

• We demonstrate that is possible to remove unimportant, or least important, 

layers by estimating their importance using PLS

• Compared to existing criteria for assigning layer importance, PLS achieves 

competitive results while being more efficient

• Compared to state-of-the-art pruning approaches, our strategy for removing 

layers achieves the best trade-offs between FLOP reduction and accuracy 

drop

Pruning Layers
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Summary

• Theoretical Concepts

• Pruning Approaches

– Pruning Filters

– Pruning Layers

• Neural Architecture Search

• HyperNet

• Incremental Partial Least Squares



Neural Architecture

Search
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Problem Definition

Proposed Approach – NAS

• Modern architectures are composed of stages

– Each stage consists of 𝑏 modules

Stage 3Stage 1 Stage 2

5
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5
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1
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Problem Definition

Proposed Approach – NAS

Human-designed

Architectures

Stage 3Stage 1 Stage 2

Depth = 3 Depth = 3 Depth = 3

Proposed NAS

Stage 1 Stage 3

Depth = 3 Depth = 2 Depth = 4

Stage 2
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Proposed Approach

Proposed Approach – NAS

Importance

0.87

Importance

0.93

Input 

Architecture

Temporary

Architecture

Candidate 

Architecture 1

Importance

0.72
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0.94
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Proposed Approach

Proposed Approach – NAS

Stage 3Stage 1 Stage 2
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Overview

Proposed Approach – NAS

Initial

Architecture

Temporary 

Architecture

Compute/Compare 

Importance

Candidate 

Architecture

Repeat # Iterations



Experiments Neural

Architecture Search
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Importance Criteria

Criterion

Iteration (ith Candidate Arch.)

1 2 3 4 5

infFS [Roffo et al. 2015] 91.59 92.09 92.02 92.36 92.45

ilFS [Roffo et al. 2017] 91.94 92.06 92.10 92.08 92.52

infFSU [Roffo et al. 2020] 90.42 92.26 91.95 92.41 92.64

PLS+VIP 92.03 92.38 92.62 92.53 92.58

Experiments – NAS

• CIFAR-10

Roffo et al. (2015). Infinite feature selection. In ICCV.

Roffo et al. (2017). Infinite latent feature selection: A probabilistic latent graph-based ranking approach. In ICCV.

Roffo et al. (2020). Infinite feature selection: a graph-based feature filtering approach. In PAMI.
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Comparison with human-designed 

architectures

Experiments – NAS

• CIFAR-10

– * indicates human-designed architectures

Architecture Depth Param. ↓

(Million)

FLOP↓

(Million)

Accuracy↑

ResNet44* 44 0.66 97 92.83

Ours (it=1) 43 0.60 92 93.38

ResNet56* 56 0.86 125 93.03

Ours (it=3) 59 0.69 130 93.36

ResNet110* 110 1.7 253 93.57

Ours (i=5) 67 0.88 149 94.27
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Comparison with state-of-the-art NAS

Experiments – NAS

• CIFAR-10

Model Evaluated↓

Models

GPUs ↓ Param.↓

(Million)

Accuracy↑

Zoph et al. [2018] 20, 000 800 2.5 94.51

Real et al. [2017] 1, 000 250 5.4 94.60

Dong and Yang [2019] 240 1 2.6 96.25

Yang et al. [2020b] 128 1 3.6 97.38

Jin et al. [2019] 60 1 --- 88.56

Ours (it=5) 11 1 2.3 94.74

Zoph et al. (2018). Learning transferable architectures for scalable image recognition. In CVPR.

Real et al. (2017). Large-scale evolution of image classifiers. In ICML.

Dong and Yang et al. (2019). Searching for a robust neural architecture in four GPU hours. In CVPR.

Yang et al. (2020b). CARS: continuous evolution for efficient neural architecture search. In CVPR.

Jin et al. (2019). Auto-keras: An efficient neural architecture search system. In SIGKDD.



P
A

G
E

 5
5

Conclusions

• We demonstrate that it is possible to design high-performance 

convolutional architectures by inserting layers based on their importance

– Layer importance is assigned by PLS

• Compared to NAS strategies, our method is extremely more efficient, as it 

evaluates one order of magnitude fewer models and discovers 

architectures on par with the state of the art

NAS
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Summary

• Theoretical Concepts

• Pruning Approaches

– Pruning Filters

– Pruning Layers

• Neural Architecture Search

• HyperNet

• Incremental Partial Least Squares



HyperNet

Approach
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Problem Definition

Proposed Approach – Latent HyperNet

Convolutional Network

Combination
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Proposed Approach – Latent HyperNet

Proposed Approach

𝑋3𝑊3

Convolutional Network

Combination

𝑋1𝑊1 𝑋2𝑊2

Latent HyperNet

(LHN)



Experiments

Latent HyperNet
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Improvements

• Improvement in accuracy

Experiments – Latent HyperNet
Kong et al. (2016). Hypernet: Towards accurate region proposal generation and joint object detection. In CVPR.

Architecture Method CIFAR-10↑ ImageNet 32x32↑

VGG16
Kong et al. [2016] -0.22 0.01

LHN (Ours) 0.05 0.66

ResNet20
Kong et al. [2016] -0.02 3.60

LHN (Ours) -0.13 2.65
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Computational Cost

• Floating Point Operations

– Million

Experiments – Latent HyperNet

Architecture Method CIFAR-10↓ ImageNet 32x32↓

VGG16
Kong et al. [2016] 313.54 314.05

LHN (Ours) 313.22 313.72

ResNet20
Kong et al. [2016] 43.91 44.42

LHN (Ours) 40.85 41.36

Kong et al. (2016). Hypernet: Towards accurate region proposal generation and joint object detection. In CVPR.
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Conclusions

• We demonstrate that an efficient yet effective way of combining multiple 

levels of features is to project them on the latent space of PLS

• Compared to time-consuming operations, we demonstrate that the PLS 

projection enhances data representation at negligible additional cost

Latent HyperNet
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Summary

• Theoretical Concepts

• Pruning Approaches

– Pruning Filters

– Pruning Layers

• Neural Architecture Search

• HyperNet

• Incremental Partial Least Squares



Incremental PLS

Approach
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Problem Definition

• Find a projection 𝑊(𝑤1, 𝑤2, … , 𝑤𝑐) using a single sample 𝑥 and its 

respective label 𝑦

– Keep the property of maximizing the covariance across all c-components

Proposed Approach – CIPLS

𝑋 ∈ ℝm 𝑋′ ∈ ℝ𝑐

(X𝑊)
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Proposed Approach

• Partial Least Squares estimates the ith component in terms of

– 𝑤𝑖 = 𝑋
𝑇𝑌

• Compute the ith component by decomposing 𝑋𝑇𝑌 as 

– 𝑋𝑇𝑌 = ∑𝑥𝑇𝑦 ⇒ 𝑤𝑖 = 𝑤𝑖 + 𝑥
𝑇𝑦 [Zeng et al. 2014]

Proposed Approach – CIPLS

Zeng et al. (2014). Incremental Partial Least Squares Analysis of Big Streaming Data. In Pattern Recognition.

First component 𝑤1
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Proposed Approach

𝑡 = 𝑋𝑤𝑖

𝑝𝑖 = 𝑋
𝑇𝑡

𝑞𝑖 = 𝑌
𝑇𝑡

𝑋 = 𝑋 − 𝑡𝑝𝑖
𝑇

𝑌 = 𝑌 − 𝑡𝑞𝑖
𝑇

Proposed Approach – CIPLS

𝑡 = 𝑥𝑤𝑖

𝒑𝒊 = 𝒑𝒊 + (𝒙
𝑻𝒕)

𝒒𝒊 = 𝒒𝒊 + (𝒚
𝑻𝒕)

𝑥 = 𝑥 − 𝑡𝑝𝑖
𝑇

𝑦 = 𝑦 − 𝑡𝑞𝑖
𝑇

• Decomposition

– 𝑋𝑇𝑌 ⇒ 𝑤𝑖 = 𝑤𝑖 + 𝑥
𝑇𝑦

Traditional PLS deflation Proposed Deflation

Single Sample Projection

Decomposition

Decomposition

Single Sample Deflation

Single Label Deflation
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Overview

Proposed Approach – CIPLS

Foreach 𝑥 ∈ 𝑋 𝑎𝑛𝑑 𝑦 ∈ 𝑌 do

CIPLS Algorithm

end

for 𝑖 = 1 to 𝑐 do

end

𝒘𝒊 = 𝒘𝒊 + (𝒙
𝑻𝒚)

𝑝𝑖 = 𝑝𝑖 + (𝑥
𝑇𝑡)

𝑞𝑖 = 𝑞𝑖 + (𝑦
𝑇𝑡)

𝑥 = 𝑥 − 𝑡𝑝𝑖
𝑇

𝑦 = 𝑦 − 𝑡𝑞𝑖
𝑇

𝑡 = 𝑥𝑤𝑖

𝒘𝒊 = 𝑿
𝑻𝒀

𝑝𝑖 = 𝑋
𝑇𝑡

𝑞𝑖 = 𝑌
𝑇𝑡

𝑋 = 𝑋 − 𝑡𝑝𝑖
𝑇

𝑌 = 𝑌 − 𝑡𝑞𝑖
𝑇

𝑡 = 𝑋𝑤𝑖

for 𝑖 = 1 to 𝑐 do

end

PLS Algorithm



Experiments

CIPLS
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Comparison with other Incremental Methods

• Face verification - Labeled Faces in the Wild (LFW)

Method Accuracy↑ Difference to PLS↓

SGDPLS [Arora et al., 2016] 90.60 [89.95 91.24] 1.87

IPLS  [Zeng and Li, 2014] 90.30 [89.60 90.99] 2.17

PLS 92.47 [91.87 93.05] ---

CIPLS (Ours) 91.78 [91.08 92.47] 0.69

Experiments – CIPLS

Zeng et al. (2014). Incremental partial least squares analysis of big streaming data. Pattern Recognition.

Arora et al (2016). Stochastic optimization for multiview representation learning using partial least squares. In ICML.
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Comparison with other Incremental Methods

Method Accuracy ↑

ImageNet 32x32

Accuracy ↑

ImageNet 224x224

SGDPLS [Arora et al., 2016] --- ---

IPLS [Zeng and Li, 2014] 43.24 64.74

PLS --- ---

CIPLS 43.31 67.09

Experiments – CIPLS

• Image classification - ImageNet

Zeng et al. Incremental partial least squares analysis of big streaming data. Pattern Recognition, 2014.

Arora et al. Stochastic optimization for multiview representation learning using partial least squares. In ICML. 2016.
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Computational Cost

Experiments – CIPLS

• Time (in seconds) for estimation the projection matrix

SGDPLS IPLS CCIPCA CIPLS (Ours)

0.01

0.005

0

0.015
T

im
e

 (
s
e
c
o

n
d

s
)
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Conclusions

• We show that it is possible to compute all components of PLS incrementally 

using simple algebraic decomposition

– Preserves all the properties of PLS across all components

– Computationally efficient and low time complexity

• Our CIPLS is the most accurate and fastest incremental PLS

CIPLS
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Codes

• Code is available at:

– https://github.com/arturjordao 

Pruning Filters CIPLSLatent HyperNet Pruning Layers
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Thesis Statement

The importance of structures (neurons or layers) composing a 

convolutional network can be effectively estimated with Partial Least 

Squares, which in turn can be computed incrementally without 

degrading its discriminative information. With the estimation of this 

importance, it is possible to obtain high-performance convolutional 

networks by removing, inserting or combining structures
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Projection

0.30.2 0.4 0.50.7 𝑤𝑖

Projected Sample

High-Dimensional Sample 𝑥

𝑡 (𝑥𝑤)
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𝑚

1 1

1

1

𝑛𝑛

1𝑚

𝑛

Partial Least Squares

𝑋 𝑡 𝑌

𝑞𝑇
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Partial Least Squares

PLS1 Algorithm

𝑤𝑖 = 𝑋
𝑇𝑌

𝑝𝑖 = 𝑋
𝑇𝑡

𝑞𝑖 = 𝑌
𝑇𝑡

𝑋 = 𝑋 − 𝑡𝑝𝑖
𝑇

𝑌 = 𝑌 − 𝑡𝑞𝑖
𝑇

𝑡 = 𝑋𝑤𝑖

for 𝑖 = 1 to 𝑐 do

end

PLS2 Algorithm

𝑤𝑖 = 𝑋
𝑇𝑢

𝑅𝑒𝑝𝑒𝑎𝑡 𝑢𝑛𝑡𝑖𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒

𝑞𝑖 = 𝑌
𝑇𝑡

𝑋 = 𝑋 − 𝑡𝑝𝑖
𝑇

𝑌 = 𝑌 − 𝑡𝑞𝑖
𝑇

𝑡 = 𝑋𝑤𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑢 ∈ 𝑅𝑛𝑥1

𝑢 = 𝑌𝑞𝑖

𝑝𝑖 = 𝑋
𝑇𝑡

for 𝑖 = 1 to 𝑐 do

end

end
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Variable Importance in Projection

𝑓𝑗 = 𝑚 

𝑖=1

𝑐

𝑆𝑆𝑖(𝑤𝑖𝑗/‖𝑤𝑖‖
2)/ 

𝑖=1

𝑐

𝑆𝑆𝑖

𝑆𝑆𝑖 = 𝑞𝑖
2𝑡𝑖
𝑇𝑡𝑖
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PLS vs. CCA

𝑐𝑜𝑟𝑟 𝑋𝑖 , 𝑌𝑖 =
𝑐𝑜𝑣 (𝑋𝑖 , 𝑌𝑖)

𝑣𝑎𝑟 𝑋𝑖 ∗ 𝑣𝑎𝑟(𝑌𝑖)

𝑐𝑜𝑣 𝑋𝑖 , 𝑌𝑖 = 𝑣𝑎𝑟 𝑋𝑖 ∗ 𝑣𝑎𝑟 𝑌𝑖 ∗ 𝑐𝑜𝑟𝑟(𝑋𝑖 , 𝑌𝑖) 𝑓1

𝑓 2
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Benchmarks
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VGG16

• 3x3 filters

VGG16 Architecture
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PLS GPU

𝑓 𝑥 = 𝑥𝑊 + 𝑏 𝑓 𝑥 = 𝑥𝑊

W 

(projection matrix)

First component

Fully Connected Layer PLS as Layer

Second component
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Loss Landscape

• 𝜃 + (𝑖 ∗ 𝛼) + (𝑗 ∗ 𝛽)

– 𝜃 network parameters

– 𝛼, 𝛽 random distributions

i = 0

j = 0

L
o

s
s
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Computational Time

Distribution of computational time

Convolutions Batch Normalization ReLU Add

8%
8%

24% 60%
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Weight Transfer

Human-designed

Architectures

Candidate

Architecture



Latent HyperNet
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41939

Baseline

HyperNet

Convolutional Network

C
o
n
v
o
lu
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o
n

A
c
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a
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Convolution Convolution
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Convolution

Kong et al. Hypernet: Towards accurate region proposal generation and joint object detection. In CVPR, 2016.
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HyperNet

Deep LayerEarly LayerOriginal Image
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IPLS Overview

Related Work – Incremental PLS

• Compute the component 𝑤𝑖 in terms of

– 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑜𝑣 𝑋𝑤, 𝑌 = 𝑋𝑇𝑌 ⇒ 𝑤𝑖 = 𝑋
𝑇𝑌

– 𝑋 and its respective 𝑌 are not in memory in advance

• Decomposition

– 𝑋𝑇𝑌 = ∑(𝑥𝑛𝑦𝑛)

– 𝑤𝑖 = 𝑤𝑖 + (𝑥𝑛𝑦𝑛)

foreach 𝑥𝑛∈ 𝑋 𝑎𝑛𝑑 𝑦𝑛 ∈ 𝑌 do

IPLS Algorithm

end

for 𝑖 = 2 to 𝑐 − 1 do

end

𝑤0 =  𝑥𝑛𝑦𝑛 + 𝑤0 𝑛−1

𝐶𝐶𝐼𝑃𝐶𝐴(  𝑥)

𝑤𝑖 = 𝐶
𝑖−1𝑤0

[12]

[11] Zeng et al. Incremental partial least squares analysis of big streaming data. Pattern Recognition, 2014.

[12] Weng et al. Candid covariance-free incremental principal component analysis. In PAMI, 2003.

[11]
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SGDPLS Overview

foreach 𝑥𝑛∈ 𝑋 𝑎𝑛𝑑 𝑦𝑛 ∈ 𝑌 do

SGDPLS Algorithm

end

for 𝑒𝑝 = 1 to 𝐸𝑝𝑜𝑐ℎ𝑠 do

end

𝑊𝑛 = 𝛼(𝑥𝑛𝑦𝑛)𝛽𝑛−1

𝛽𝑛 = 𝛼 𝑦𝑛𝑥𝑛 𝑊𝑛−1
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CCIPCA Overview

foreach 𝑥𝑛∈ 𝑋 𝑎𝑛𝑑 𝑦𝑛 ∈ 𝑌 do

CCIPCA Algorithm

end

for 𝑖 = 1 to 𝑘 do

end

𝑤𝑖 = 𝜆𝑤𝑖 + 𝜃𝑥𝑛(𝑥𝑛
𝑇𝑤𝑖)

𝑥𝑛 = 𝑥𝑛 − (𝑥𝑛
𝑇𝑤𝑖)𝑤𝑖

𝑘 = min(𝑛, 𝐿)

𝜆 =
𝑛 − 1 − 𝑙

𝑛

𝜃 =
𝑛 + 𝑙

𝑛
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Higher-order Components

PLS SGDPLS

IPLS CIPLS
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Introduction

• Pattern recognition methods have led to a series of breakthroughs

– Improvement in data representation (features)

– Learn features from raw data (convolutional networks)

– Transformations on the pre-computed features (dimensionality reduction)

2015

Deep Learning

Integral Features

2001

2005

HOG Features

≈


