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Abstract

Modern pattern recognition methods are based on convolutional networks since they
are able to learn complex patterns that benefit the classification. However, convolutional
networks are computationally expensive and require a considerable amount of memory,
which limits their deployment on low-power and resource-constrained systems. To han-
dle these problems, recent approaches have proposed pruning strategies that find and re-
move unimportant neurons (i.e., filters) in these networks. Despite achieving remarkable
results, existing pruning approaches are ineffective since the accuracy of the original net-
work is degraded. In this work, we propose a novel approach to efficiently remove filters
from convolutional networks. Our approach estimates the filter importance based on its
relationship with the class label on a low-dimensional space. This relationship is com-
puted using Partial Least Squares (PLS) and Variable Importance in Projection (VIP).
Our method is able to reduce up to 67% of the floating point operations (FLOPs) without
penalizing the network accuracy. With a negligible drop in accuracy, we can reduce up
to 90% of FLOPs. Additionally, sometimes the method is even able to improve the ac-
curacy compared to original, unpruned, network. We show that employing PLS+VIP as
the criterion for detecting the filters to be removed is better than recent feature selection
techniques, which have been employed by state-of-the-art pruning methods. Finally, we
show that the proposed method achieves the highest FLOPs reduction and the smallest
drop in accuracy when compared to state-of-the-art pruning approaches.

1 Introduction

Convolutional networks have been an active research topic in Computer Vision mostly be-
cause they have achieved state-of-the-art results in numerous tasks [2, 9]. However, convo-
lutional networks are computationally expensive, present a large number of parameters and
consume a considerable amount of memory, hindering applicability on low-power and real-
time systems. To handle these problems, there exist three groups of approaches: (i) 1 x 1
convolutional filters, which reduce the dimensionality of the input feature map by squeezing

(© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Liu and Deng} 2015


2 JORDAO, KLOSS, AKIO, SCHWARTZ: PRUNING DEEP NETWORKS USING PLS

the depth variables, decreasing the number of parameters [2]; (ii) binarization of weights and
activations, which replaces arithmetic operations with bitwise operations, improving speed-
up and memory requirements [6, 12]; and (iii) pruning approaches, which remove neurons
from a network, providing all the benefits of (i) and (ii) to deep architectures [4, 5, 8]. Based
on these advantages, most efforts have focused on pruning methods.

Despite being simple and presenting considerable results, modern pruning approaches
either require human effort or demand a high computational cost. In addition, current pruning
criteria are ineffective since the accuracy of the original, unpruned, network is degraded. For
instance, the method proposed by Li et al. [8] employs the L1-norm to locate candidate
neurons (i.e., filters) to be eliminated. However, it requires considerable human effort to
evaluate different tradeoffs between network performance and pruning rate (percentage of
filters removed). Based on this limitation, Huang et al. [5] proposed a pruning approach that
removes unnecessary filters by learning pruning agents. These agents take the filter weights
from a layer as input and output binary decisions indicating whether a filter will be kept or
removed. Even though Huang et al. [5] achieved superior performance to the hand-crafted
pruning criterion by Li et al [8], their method demands a higher computational cost because
each agent is modeled as a neural network. In addition, when a higher number of the filters
are eliminated the network accuracy decreases considerably.

Motivated by the limitations in current pruning methods, we propose a novel approach
to efficiently eliminate filters in convolutional networks. Our method' relies on the hypoth-
esis that estimating the filter importance based on its relationship with the class label, on a
low-dimensional space, is adequate to locate unimportant filters. This relationship is cap-
tured using Partial Least Squares, a discriminative feature projection method [11, 16]. An
overview of our method is the following. First of all, we represent the convolutional filters of
the network as features. To this end, we present the training data to the network and interpret
the output of each convolutional filter as a feature vector (or a set of features), as illustrated
in Figure 1 (a). After this stage, we create a high dimensional feature space, representing all
convolutional filters of the network at once. Then, we project this high dimensional space
onto a latent space using Partial Least Squares (PLS). Next, we employ the Variable Impor-
tance in Projection (VIP) technique to estimate the contribution of each feature in generating
the latent space, enabling PLS to operate as a feature selection method. The idea behind

!Codes available at https://github.com/arturjordao/PruningNeuralNetworks
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Figure 1: (a) Representation of convolutional filters as feature vectors. For simplicity,

the network shows only one filter (one dimension of the feature space) in each layer. (b)

Overview of the proposed method to prune convolutional filters from deep networks.
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this process is that, since the filters (i.e., its outputs) are represented as features, we are esti-
mating the filter importance with respect to its relationship with the class label on the latent
space (PLS criterion). Finally, we eliminate filters with low importance. This process can be
iteratively repeated until a specific number of iterations, as illustrates Figure 1 (b).

Different from existing pruning criteria, by using filter importance based on the PLS pro-
jection is extremely effective, where the method achieves the lowest drop in accuracy (some-
times improving the network accuracy). In addition, PLS+VIP presents superior results than
state-of-the-art feature selection techniques, which have been used to prune networks.

We evaluate our method by pruning the VGG16 [9] and ResNet [2] architectures on
ImageNet [1] and CIFAR-10 [7] datasets, where we are able to reduce up to 67% of FLOPs
without penalizing network accuracy. With a negligible drop in accuracy, we can reduce up
to 90% of FLOPs. Furthermore, sometimes, the method improves network accuracy.

2 Proposed Approach

Filter Representation. The first step in our method is to represent the output of the filters
(i.e., its feature maps) that compose the network as feature vectors. For this purpose, let
us consider we have m training samples, which are forwarded on the network to obtain the
feature maps provided by each convolutional filter. Since these feature maps are high dimen-
sional, we apply a pooling operation to reduce their dimension. In this work, we consider
the following pooling operations: global max and average pooling, and max-pooling 2 X 2.
Finally, the output of the pooling operation is interpreted directly as one feature (when us-
ing the global pooling operations) or a set of features (when using the max-pooling 2 x 2).
Specifically, each filter is represented by its feature maps followed by the pooling operation,
as illustrates Figure 1 (a). The intuition for using the feature map as a feature is that we are
able to measure its relationship with the class label on the latent space (via PLS). In this way,
a filter associated with a feature with low relationship might be removed.
Feature Projection. After executing the previous step, we have generated a high dimen-
sional space R? that represents all filters of the convolutional network. The second step
of our method is to project this high dimensional space onto a low dimensional space R¢
(c < d), referred to as latent space. To this end, we employ Partial Least Squares (PLS), a
discriminative feature projection method widely employed to model the relationship between
dependent and independent variables. PLS works as follows. Let X C R™*¢ and y C R"™*k
be a matrix of independent and dependent variables, respectively. In our method, the matrix
X is the representation of the filters we have generated (first step of the proposed method)
and y is the class label matrix, where k denotes the number of categories.

PLS estimates a projection matrix W (w1, wy,...w,) that projects the high dimensional
space R¢ onto a low dimensional space R (c is a parameter) such that each component
w; € W represents the maximum covariance between the X and y, as shown in Equation 1.

w; = argmax(Cov(Xw,y)),s.t||w| = 1. (1)

To solve Equation 1, we can use Nonlinear Iterative Partial Least Squares (NIPALS) or SVD.
In this work, we use NIPALS since it is faster than SVD. In addition, it allows us to find only
the first ¢ components, while SVD finds all d components, spending more computational
resources. Algorithm 1 introduces the steps of NIPALS to obtain the first ¢ components,
where the convergence step is achieved when no changes occur in w;. Also, we might define
a number of steps as convergence criterion, to ensure that the method stops.
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Algorithm 1: NIPALS Algorithm.

Input : X C R”™*¢, y ¢ R™**, Number of components ¢
Ouput: W C Rex¢

1 for i=1tocdo

2 randomly initialize u € R™*!
T
3 w; = Hi((fz”,where wieW
T

- g = Y
4| =X g = g
5 U=yqi
6 Repeat steps 3 — 5 until convergence

T, \T T

7 X=Xfl‘l'(X l,‘) ,yzyfl,‘qi

s end

Note that, in this step of our method, other feature projection methods could be em-
ployed, e.g., PCA or LDA. However, we believe that the idea behind PLS, which is to cap-
ture the relationship between the feature (in our context a filter) and its class label, is more
suitable. In particular, when compared to LDA, PLS is robust to sample size problem (singu-
larly) [10]. Moreover, PLS can be learned using few samples, not requiring all the data to be
available in advance. These advantages make PLS more flexible and efficient than traditional
feature projection methods, mainly for large datasets and resource-constrained systems.
Filter Importance. The next step in our method is to measure the filter importance score
to remove the ones with low importance. To this end, once we have found the projection
matrix W, we estimate the importance of each feature based on its contribution to yield the
latent space employing the Variable Importance in Projection (VIP) technique [11]. For each
feature, f;, VIP calculates its importance in terms of

(4 4
fi= \/dZSi(Wij/||Wi|2)/ZSi, @
i=1 i=1

where S; is the sum of squares explained by the i-#2 component, which can alternatively be
expressed as qizt{ t; (defined in Algorithm 1) [11]. We highlight that following the modeling
performed in the first step of our method, a feature is associated (i.e. correspond) with a
filter. This is because the feature is represented by the feature maps of the filter. Observe
that when using the max-pooling operation as filter representation, we have a set of features
for each filter; in this case, the final score of a filter is the average of its f;.

Prune and Fine-tuning. Given the importance of all filters that compose the network, we
have generated a set of scores, {fi, f2,..., fj}. Then, given a pruning ratio p (e.g., 10%), we
remove p% of the filters based on its scores. By executing all these steps, we have executed
one iteration of the proposed method, as illustrated in Figure 1 (b). Note that the input
network to the next iteration is the pruned network of the previous iteration.
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3 Experimental Results

Experimental Setup. We conduct experiments using a single NVIDIA GeForce GTX 1080
TI on a machine with 64GB of RAM. Following previous works [5, 8], we examine some
aspects and parameters of our method by considering VGG16 only on CIFAR-10 and discuss
the results using drop in accuracy in percentage points (p.p), where negative values denote
improvement w.r.t the original, unpruned, network. Also, we compute FLOPs following the
work of Li et al. [8]. Finally, we set the pruning rate to 10% and the number of components
of PLS to ¢ = 2, where our method resulted in the least drop in accuracy.

Influence of the filter representation. One of the most important issues in our method
is the pooling operation, referred to as filter representation, employed on the feature map
provided by a filter. This experiment aims at validating this issue. For this purpose, we
execute ten pruning iterations using different pooling operations. As illustrated in Figure 2,
accuracy decreases slower when global max-pooling is employed. On the contrary, by using
the max-pooling 2 x 2 accuracy drops faster, where at the 10th iteration the method drops
26 p.p. compared to the network without pruning. In addition, this representation has the
drawback of consuming additional memory compared to the global operations (max and
average) which reduce the feature map to one dimension. Based on this result, we use the
global max-pooling as filter representation in the remaining experiments.

0.95
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Figure 2: Accuracy obtained by pruning VGG16 using different filter representations.

Number of samples to learn the PLS. On large datasets, our method could be impracticable
due to memory constraints, since NIPALS requires all the samples be in memory. However,
an advantage of PLS is that it can be learned with a small number of samples. Thus, we can
subsample X before executing NIPALS, enabling our method to operate on large datasets.
In this experiment, we intend to demonstrate that the proposed method is robust when
fewer samples are used to learn the PLS. To this end, we vary the percentage of training
samples (using a uniform subsampling) used to compose X in Algorithm 1. Table 1 shows the
results obtained after one pruning iteration, where it is possible to observe that the network
accuracy is slightly changed as a function of the number of samples used to learn the PLS.
In particular, sometimes, the accuracy is the same as employing 100% of the samples (e.g.,
using 20%). Also, the difference between using 100% and 10% of the samples is only 0.1
p-p-- Thus, to conduct the experiments on ImageNet, we used only 10% of the samples.
Iterative pruning vs. single pruning. In this experiment, we show that it is more appro-
priate to execute our method iteratively, as illustrated in Figure 1 (b), with a low pruning
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Table 1: Accuracy by pruning VGG16 on CIFAR-10 (validation set), using different number
of samples to learn the PLS.
(%)Training Samples 10 20 40 60 80 100
Accuracy after pruning | 89.7 | 89.8 | 89.7 | 89.8 | 89.6 | 89.8

ratio (i.e 10%) instead of using a single pruning iteration with a high pruning ratio. In other
words, if we want to remove i.e. 40% of filters, it is better to execute some iterations of our
method with a low pruning ratio instead of setting a pruning ratio of 40% and execute only a
single iteration. For this purpose, we first execute five iterations of the proposed method with
a pruning ratio of 10%. Then, after each iteration, we compute the percentage of removed
filters, p;. Finally, we use each p; as the pruning ratio to execute a single iteration of the
method. According to the results in Table 2, performing our method iteratively with a low
pruning ratio is more effective than using it with a large pruning ratio, which led to a higher
drop in accuracy. For instance, by executing five iterations of the method with a pruning
ratio of 10%, we are able to remove 40% of filters while improving the network accuracy
(indicated by negative values in Table 2). On the other hand, by applying a single iteration
with a pruning ratio of 40%, the accuracy decreased 1.76 p.p..

Table 2: Drop in accuracy when executing our method with few iterations and a low pruning
ratio (Iterative Pruning), and when executing a single iteration with a high pruning ratio
(Single Pruning). Results on CIFAR-10 (test set).

Percentage of Removed Filters (%) Iterative Pruning Accuracy| Single Pruning Accuracyl

10 ~0.89 (it=1) ~0.89
27 —1.08 (it=3) ~0.03
40 —0.69 (it=5) 1.76

65 1.56 (it=10) 20.21

Comparison with other pruning criteria. The idea behind this experiment is to demon-
strate that the criterion employed by our method is more effective to eliminate filters than
existing pruning criteria as well as state-of-the-art feature selection techniques. To this end,
we use one iteration of pruning and follow the process suggested in [17], which consists of
setting the same pruning ratio (10%) and modifying only the criterion to select the filters to
be removed. By employing one pruning iteration, we are able to show the robustness of the
methods when employing a single stage of fine-tuning. Recall that, for each iteration of our
method, we execute a single stage of fine-tuning, thereby, the number of iterations defines the
number of fine-tuning stages. Finally, as input to the methods of feature selection (Infinity
FS [13] and Infinity Latent FS [14]), we use the global max-pooling” filter representation.
Table 3 (Left) shows the results obtained by different pruning criteria. According to
the results, our criterion to define the filter importance is more suitable than L.1-norm and
APoZ, where we achieve the lower drop in accuracy. In addition, PLS+VIP achieved superior
performance when compared to methods designed specifically for feature selection [13, 14].
The reason for these results is that PLS preserves filters with high relationship with the class
label, which are the most important to the classification ability of the network.
Comparison with existing pruning approaches. This experiment compares the proposed
method with state-of-the-art pruning approaches. For this purpose, we report the results
using one and five iterations of our method and the iteration where it achieved the closest

2This representation was the one where the methods achieved the best results on CIFAR-10 (validation set).
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drop in accuracy compared to the best method. Table 3 (Right) summarizes the results.

On CIFAR-10, our method achieved the best tradeoff between the drop/improvement
in accuracy and FLOPs reduction. When compared to Hu et al. [4] and Li et al. [8], we
achieved around 2 x more FLOPs reduction with superior improvement in accuracy on both
networks. Compared to Huang et al. [5], our method decreased 1.5x more FLOPs with a
smaller drop in accuracy on VGG16. In addition, by pruning ResNet56 and ResNet110, our
method achieved a higher FLOPs reduction than the most recent pruning approaches [3, 17].
We also compared the proposed method with Li et al. [8] (A) and (B), which consists of
employing several pruning ratios for different parts of the network. By performing five
iterations of the proposed method, we outperformed Li (A) and (B) on both FLOPs reduction
and accuracy improvement. Observe that, while existing pruning approaches degrade the
network accuracy, our method is, in fact, able to improve accuracy.

On ImageNet, with only three iterations of the proposed method, we were able to achieve
the smallest drop in accuracy and 1.80x more FLOPs reduction than all the methods. Also,
with two additional iterations, we decreased about 3 x more FLOPs than all other methods.

Table 3: Left. Comparison with different criteria, on CIFAR-10, to determine the filter im-
portance. Right. Comparison with state-of-the-art pruning approaches (results reported by
the original papers). Acc.] denotes drop in accuracy (in percentage points), where negative
values denote improvement regarding the original, unpruned, network. FLOPs | denotes the
percentage of FLOPs reduced (the higher the better) w.r.t the original network.

Importance Acc.| Method FLOPs|  Acc.
Criterion ’ Hu et al. [4] 28.29 —0.66
L1Norm [8] —0.69 Li et al. [8] 34.00 —0.10
APoZ [4] —0.70 VGG16 on Huang et al. [5] 64.70 1.90
Inf. FS [13] —0.69 CIFAR-10 Ours (it=1) 23.13 —0.89
Inif. Latent FS [14] —0.65 Ours (it=5) 67.25 —0.63
PLS+VIP (Ours) —0.89 Ours (it=10) 90.66 1.50
Li (A) [17] 10.40 —0.06
Li (B) [17] 27.60  —0.02

Yuetal. [17] 43.61 0.03

Rgigzgi o |_Heetal.[3] 5000 090
Ours(it=1) 7.09 —0.60
Ours(it=5) 35.23 —0.90
Ours(it=8) 52.56 —0.62

Li (A) [17] 1590  0.02

Li (B) [17] 3860  0.23

ResNet1 10 o | Yuetal17] 4378  0.18
CIFAR-10 Ours(it=1) 6.85 —0.59

Ours(it=5) 33.16 —1.51
Ours(it=7) 4446  —1.39

Li et al. [8] 20.00 14.60

Wang et al. [15] 20.00 2.00

He et al. [3] 20.00 1.40
Ygfgi;g? Ours(it=1) 931 —0098

(224 % 224) Ours(it=3) 36.03 1.06

Ours(it=5) 59.27 2.21

Based on the aforementioned discussion, we have shown that the proposed method at-
tains a superior reduction in FLOPs. This is an effect of the layers where it removes the
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Figure 3: (a) Number of float point operations (FLOPs) per layer of the VGG16 network.

(b) Percentage of removed filters in each layer using different pruning methods.
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filters. According to Figure 3 (a), the layers 2, 4, 6, 7, 9 and 10 have the highest number
of FLOPs. In general, the existing methods fail to eliminate filters from these layers. For
instance, the methods proposed by Li et al. [8] and Huang et al. [S] remove a large number
of filters from the layers 9 to 13 (Figure 3 (b)), but they remove a small number of filters
from other layers. On the contrary, our method eliminates a large number of filters from all
layers, as shown in Figure 3 (b). In particular, we eliminate more than 50% of filters from
layers 2 to 10, which are the ones with the largest number of FLOPs, and more than 25%
from the other layers. Hence, we are able to achieve a higher FLOPs reduction than existing
state-of-the-art methods, which are biased in eliminating filters of particular layers.

4 Conclusions

This work presented an accurate pruning method to remove filters from convolutional net-
works. The proposed method interprets each filter as a feature vector and creates a high
dimensional space using these features. Then, it projects this space onto a low-dimensional
latent space, using Partial Least Squares, which captures the relation between the feature
(filter) and its class label. Finally, the method estimates the importance of each feature to
yield the latent space and removes the ones with low importance (low relationship with the
class label). The method is able to reduce up to 67% of FLOPs without penalizing the net-
work accuracy. In particular, it is even able to improve the accuracy regarding the original
network. In addition, with a negligible drop in accuracy, the method is able to reduce up
to 90% of FLOPs. Compared to state-of-the-art pruning methods, our method is extremely
effective, where it attains the highest FLOPs reduction and the smallest drop in accuracy.
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