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Resumo

Detecção de pedestres é um bem conhecido problema em Visão Computacional, prin-
cipalmente por causa de sua direta aplicação em vigilância, segurança de trânsito e
robótica. Na última década, vários esforços têm sido realizados para melhorar a de-
tecção em termos de acurácia, velocidade e aprimoramento de features. Neste tra-
balho, nós propomos e analisamos técnicas focando sobre estes pontos. Primeiro, nós
desenvolvemos uma acurada random forest oblíqua (oRF) associada com Partial Least
Squares (PLS). O método utiliza o PLS para encontrar uma superfície de decisão, em
cada nó de uma árvore de decisão. Para mensurar as vantagens providas pelo PLS so-
bre o oRF, nós comparamos o método proposto com a random forest oblíqua baseada
em SVM. Segundo, nós avaliamos e comparamos abordagens de filtragem para reduzir
o espaço de busca e manter somente regiões de potencial interesse para serem apresen-
tadas para os detectores, acelerando o processo de detecção. Resultados experimentais
demonstram que os filtros avaliados são capazes de descartar um grande número de
janelas de detecção sem comprometer a acurácia. Finalmente, nós propomos uma nova
abordagem para extrair poderosas features em relação à cena. O método combina resul-
tados de distintos detectores de pedestres reforçando as hipóteses humanas, enquanto
que suprime um significante número de falsos positivos devido á ausência de consenso
espacial quando múltiplos detectores são considerados. A abordagem proposta, referida
como Spatial Consensus (SC), supera os resultados de todos os métodos de detecção
de pedestres previamente publicados.
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Abstract

Pedestrian detection is a well-known problem in Computer Vision, mostly because of
its direct applications in surveillance, transit safety and robotics. In the past decade,
several efforts have been performed to improve the detection in terms of accuracy, speed
and feature enhancement. In this work, we propose and analyze techniques focusing
on these points. First, we develop an accurate oblique random forest (oRF) associated
with Partial Least Squares (PLS). The method utilizes the PLS to find a decision
surface, at each node of a decision tree, that better splits the samples presented to
it, based on some purity criterion. To measure the advantages provided by PLS on
the oRF, we compare the proposed method with the oRF based on SVM. Second, we
evaluate and compare filtering approaches to reduce the search space and keep only
potential regions of interest to be presented to detectors, speeding up the detection
process. Experimental results demonstrate that the evaluated filters are able to discard
a large number of detection windows without compromising the accuracy. Finally, we
propose a novel approach to extract powerful features regarding the scene. The method
combines results of distinct pedestrian detectors by reinforcing the human hypothesis,
whereas suppressing a significant number of false positives due to the lack of spatial
consensus when multiple detectors are considered. Our proposed approach, referred
to as Spatial Consensus (SC), outperforms all previously published state-of-the-art
pedestrian detection methods.

Keywords: Random Forest, Oblique Decision Tree, Partial Least Squares, Filtering
Approaches, High-Level Information, Fusion of Detectors, Pedestrian Detection.
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Chapter 1

Introduction

Since the past decade, pedestrian detection has been an active research topic in Com-
puter Vision, mostly because of its direct applications in surveillance, transit safety
and robotics [Benenson et al., 2014]. This task faces many challenges, such as variance
in clothing styles and appearance, distinct illumination conditions, frequent occlusion
among pedestrians and high computational cost.

Figure 1.1 introduces the steps employed by traditional approaches to detect
pedestrians in an image. First, the image is downsampled by a scale factor generating
a set of new images, this procedure is named scale pyramid. Then, a window slides on
each image of the pyramid yielding several candidate windows. Once the candidates
have been generated, they might be presented to an optional filtering stage, employed
to remove a large number of windows quickly. Finally, for each candidate window,
features are extracted and presented to a classifier that assigns a score, which will be
considered as the likelihood of having a pedestrian located at the particular location
in the image. Different challenges are found throughout this pipeline and this work
addresses some of them. More specifically, we tackle these challenges by acting on three
main points: classification, candidate rejection, and fusion of detectors.

According to Benenson et al. [2014], the most promising pedestrian detection
methods are based on deep learning and random forest. Despite accurate, deep learning
approaches (commonly convolutional neural networks) require a powerful hardware
architecture and considerable amount of samples to learn a model. Moreover, the best
results associated to such approaches are comparable with simpler methods [Dollár
et al., 2012; Benenson et al., 2014]. On the other hand, random forest approaches are
able to run on simple CPU architecture and can be learned with fewer samples. The
increasing number of studies based on this classifier is due several advantages that this
approach presents including low computational cost to test, probabilistic output and

1
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Input Image

Human
Non-Human

Scale Pyramid
Dense Sampling 
Sliding Window

Classification
Features 

Extraction

Candidate 
Windows

Filtering Stage

Figure 1.1. Detection pipeline used to find people in images.

it naturally treats problems with more than two classes [Criminisi and Shotton, 2013].

Following the definition of Breiman [2001], a random forest is a set of decision
trees, in which the response is a combination of all tree responses at the forest. We can
classify a random forest according to the type of the decision tree that it is composed:
orthogonal or oblique. In the former type, each tree node creates a boundary decision
axis-aligned, i.e, it divides the data selecting an individual feature at a time. The latter
type separates the data by oriented hyperplanes, providing better data separation and
shallower trees [Menze et al., 2011]. Inspired by these features, in the first part of
this work, we propose a novel oblique random forest (oRF) associated with Partial
Least Squares (PLS) [Jordao and Schwartz, 2016], which is a popular technique to
dimensionality reduction and regression [Schwartz et al., 2009, 2011; de Melo et al.,
2014].

Even providing an accurate detection, the proposed method based on oblique
random forest leads to a high computational cost, since each detection window must
be projected in each node at the tree (path from the root to the leaf) to obtain its
confidence. This is a drawback of this class of oblique random forest. However, several
pedestrian detection optimization approaches can be utilized to address the referred
problem. The majority of the optimization approaches focuses on four main aspects,
namely: (i) computing fast features [Nam et al., 2014; Dollár et al., 2014]; (ii) cascades
of rejection [Ko et al., 2013, 2014]; (iii) parallelization and use of GPUs [Masaki et al.,
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2010; Benenson et al., 2012a]; and (iv) filtering regions of interest [Silva et al., 2012;
de Melo et al., 2014]. Among the aforementioned approaches, filtering regions of inter-
est is a simple and effective way of speeding up the detection. Filtering approaches are
performed before of the feature extraction and classification stage, and focus on reduc-
ing the amount of data that has to be processed, allowing the consideration of fewer
samples (detection windows), reducing the computational cost. Such approaches are
based on two prior knowledges: (1) only a subset of all detection windows contains the
target object (the distribution between pedestrian and non-pedestrian is largely unbal-
anced) and (2) several detection windows cover the same object at the scene [de Melo
et al., 2013; Silva et al., 2012; de Melo et al., 2014].

Although filtering approaches are effective, it is unclear which filters are more ap-
propriate according to the detector employed since there is not a study evaluating this
relationship. Even though similar studies have been performed in previous works [Dol-
lár et al., 2009, 2014], where several techniques to improve the detection rate were
evaluated, to the best of our knowledge, there is not a comparison among filters in
terms of efficiency and robustness, i.e., the ability of rejecting candidate windows while
preserving a high detection rate. This motivated the second part of our work, where
we evaluate and compare filtering approaches to both reduce the search space and keep
only potential regions of interest to be presented to detectors [Jordao et al., 2015].

While numerous classification methods and optimization approaches have been
investigated, the majority of efforts in pedestrian detection in the last years can be
attributed to the improvement in features alone and evidences suggest that this trend
will continue [Dollár et al., 2012; Benenson et al., 2014]. In addition, several works show
that the combination of features creates a more powerful descriptor which improves the
detection [Schwartz et al., 2009; Dollár et al., 2009; Marín et al., 2013]. Despite the
combination of features provide a better discrimination, pedestrian detection is still
dealing with some problems. The existence of false positives, such as lampposts, tree
and plates, which are very similar to the human body, is a difficult problem to solve.
To address this problem, previous works employed high level information regarding the
scene to refine the detections [Schwartz et al., 2011; Li et al., 2010; Benenson et al.,
2014; Jiang and Ma, 2015].

The most recent work regarding high level information, proposed by Jiang and
Ma [2015], relies on the following hypothesis. If two detectors find the same object,
given a determined overlapping area, the window with lower response is discarded and
its confidence multiplied by a weight is added to the kept window. This is powerful
because in the event of a true positive, the discarded window helps to increase the
confidence of the kept one, while in the case of a false positive, it contributes to decrease
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the confidence. However, when the windows do not overlap, their method keeps both,
which might increase the number of false positives (details in Section 3.3). Aiming at
tackling such limitation, in the third part of this work, we propose a novel late fusion
method called Spatial Consensus (SC) to combine multiple detectors [Jordao et al.,
2016].

According to the experimental results, the proposed oblique random forest based
on PLS (oRF-PLS) achieves comparable results when compared with traditional meth-
ods based on HOG features. Besides, we demonstrate that a smaller forest is produced
when compare to the oblique random forest based on SVM (oRF-SVM). In the exper-
iments considering the filtering approaches, we demonstrate that the evaluated filters
are able to discard a large number of windows without compromising the detection
accuracy. Finally, regarding the spatial consensus algorithm, experiments showed that
it outperforms the state-of-the-art, achieving the best results in all evaluated datasets.

1.1 Motivation

An important application involving the pedestrian detection is to improve the efficient
of the work of a human operator. For instance, large surveillance centers demand which
a single operator observes several cameras at the same time to find suspicious activities.
However, studies show that in a short time the concentration is lost since this activity is
routine and monotonous [Smith, 2004]. To avoid that, pedestrian detection algorithms
might be employed to attract the operator’s attention to a determined camera (or
another surveillance device) and relevant regions of the scene, improving the efficient
of the work. Another target in detect people in images is directed to automatic systems
applications, e.g, driving assistance and robotics. In these applications, the pedestrian
detection assists on the decision-making, focusing on avoiding damage to the humans
and the environment. The issues listed above require a robust and accurate pedestrian
detection, these requirements motivated us to propose and study a series of techniques
focused on improvement of pedestrian detection.

Our first center of attention regards the classification stage associated with
oblique random forest. Such class of random forest is commonly generated using the
SVM as oriented hyperplane (details in Section 3.1.2). This inspired the first part of
our work, where we demonstrate experimentally that the PLS provide a more accurate
oblique random forest than SVM [Jordao and Schwartz, 2016].

Due to numerous projections (one for each node at the tree that composes the for-
est), the oblique random forest presents high computational cost. This fact encouraged
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the second part of our work, in which we consider several optimization approaches to
keep only regions of the scene where there is the object of interest [Jordao et al., 2015].
Therewith, a smaller number of candidate windows are propagated to the classifica-
tion stage to allow a faster pedestrian detection without compromising the detection
accuracy.

The promising results using high level information regarding the scene to refine
detections [Schwartz et al., 2011; Li et al., 2010; Benenson et al., 2014; Jiang and
Ma, 2015] motivated the third part of our work, where we propose a novel late fusion
method to combine the responses coming from multi-detectors [Jordao et al., 2016].

1.2 Objectives

This work targets the problem of finding people in images through use distinct ways
in different stages of the detection (see Figure 1.1). We can divide the objectives into
three main parts, as follows. First, we intend to demonstrate the advantage of the PLS
as alternative to build the oblique random forest. To this end, we employed another
accurate classifier to produce the oblique random forest, the SVM. Second, we intend
to evaluate the behavior of the filters approaches when employed on different detectors.
To this analysis, we collect the main filters used in the pedestrian detection context.
Third, we demonstrate that information coming from multiple detectors can improve
the detection, increasing the confidence of true positives. To evidence that, we propose
a novel late fusion method that enable such combination and we showed experimentally
that our method is a more suitable choice to fuse detectors when compared with the
weighted-NMS (a recent approach to combine detectors) [Jiang and Ma, 2015].

1.3 Contributions

Our first contribution is a novel alternative to generate the oRF to providing a smaller
forest when compared with the traditional oRF-SVM [Jordao and Schwartz, 2016]. Our
second contribution is a detailed study of a series of filtering approaches that provide
a lower computational cost to the detection [Jordao et al., 2015]. Finally, our last
contribution is a novel late fusion approach that enable to combine multi-detectors
improving the detection [Jordao et al., 2016].

The publications achieved with this work are listed as follows.

1. Jordao, A., de Melo, V. H. C., and Schwartz, W. R. (2015). A study of filter-
ing approaches for sliding window pedestrian detection. In Workshop em Visao
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Computacional (WVC), pages 1-8.

2. Jordao, A., de Souza, J. S., and Schwartz, W. R. A Late Fusion Approach to
Combine Multiple Pedestrian Detectors. In IEEE Transactions on Image Pro-
cessing (ICPR).

3. Jordao, A. and Schwartz, W. R. Oblique random forest based on partial least
squares applied to pedestrian detection. In IEEE International Conference on
Image Processing (ICIP).

1.4 Work Organization

In Chapter 2, we review the main pedestrian detection techniques, features and ap-
proaches to decrease the computational cost as well as methods with focus on improve
the detection results. Chapter 3 starts by describing the pipeline detection employed
by pedestrian detectors. Afterwards, we introduce some concepts regarding the PLS.
Then, we describe the oblique random forest and as use the PLS into oblique random
forest. Next, we explain each filtering approach studied in this work. Finally, we de-
scribe the steps of our proposed late fusion method. In Chapter 4, we present the
experiments executed to validate the oblique random forest based on PLS, the filtering
approaches and the late fusion algorithm and discuss the results obtained. Finally,
Chapter 5 provides the conclusions and directions to future works.



Chapter 2

Related Work

In this chapter, we present an overview regarding the main approaches employed in
the pedestrian detection context. Initially, we discuss the main feature descriptors
employed to describe human samples and background samples. Then, we review ap-
proaches used to reduce the computational cost to enable faster detection. Finally, we
demonstrate techniques applied after the detection stage to improve the detection.

The detector based on the Histogram of Oriented Gradients (HOG) features pro-
posed by Dalal and Triggs [2005] enabled impressive advances in several object recog-
nition tasks, mainly on the pedestrian detection problem. On their initial work, Dalal
and Triggs proposed to divide the detection windows in blocks of 16 × 16 pixels with
shift of 8 × 8 pixels between blocks to compute the HOG features. Zhu et al. [2006]
then showed that extracting HOG with different block sizes and strides, could lead to
a more discriminative descriptor. Following the work of Zhu et al. [2006], Schwartz
et al. [2009] employed similar block configurations to extract HOG features and with
the addition of extra information provided by co-occurrence and color frequency fea-
tures, the detector proposed by Schwartz et al. [2009] was able to reducing considerably
the false positives. However, these features when combined yield a high dimensional
feature space, rendering many traditional machine learning techniques intractable. To
address that, the authors employed the partial least squares (PLS) to reduce the high
dimensional feature space onto a low dimensional latent space before projecting itself
to Quadratic Discriminant Analysis (QDA) performs the classification.

Similarly to Schwartz et al. [2009], several works showed that the combination of
features creates a more powerful descriptor that improves the detection [Dollár et al.,
2009; Marín et al., 2013]. A classical example of feature combination widely-used is the
HOG with local binary patter (LBP), HOG+LBP [Wang et al., 2009]. This merge has
been shown efficient since HOG describes the shape information while the LBP capture

7
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the texture of the object, both important clues to find people in images. Marín et al.
[2013] employed this combination to describe human regions with high discriminative
power, achieving a detector robust to partial occlusions. In contrast to Marín et al.
[2013], Costea and Nedevschi [2014] combined HOG+LBP and LUV color channels
in a high level visual words named word channels allowing detection of pedestrians
of different sizes on single scale image, which considerably reduces the computational
cost.

Another feature combination that present good results to object detection are
the Integral Channel Features (ICF) [Dollár et al., 2009]. Proposed by Dollár et al.
[2009], the ICF features consists on ten channels of features: HOG (6 channels), LUV
color channels (3 channels) and normalized gradient magnitude (1 channel). All these
feature channels are extracted using the Integral Image trick, which render the feature
extraction process extremely fast [Gerónimo and López, 2014]. Due to its simplicity
and low computational cost, ICF features are the most predominant features explored
in pedestrian detection, as illustrates Table 2.1. That table lists the main state-of-the-
art pedestrian detectors on INRIA person dataset and synthesizes the essential features
of each detector instead of discussing each one individually. An important aspect to
be pointed out is that the Adaboost classifier is usually a preferential choice since its
classification is very fast, mainly when combined with ICF features.

Adaboost classifier consists on an ensemble of classifiers that are combined to
make prediction once test samples are presented. Generally, weak classifiers as decision
stumps and orthogonal decision forest are chosen to compose the ensemble. However,
some works [Criminisi and Shotton, 2013; Marín et al., 2013] have shown promising
results when using strong classifiers (for instance SVM) on the ensemble. Inspired by
these works [Criminisi and Shotton, 2013; Marín et al., 2013], we analyze, in the first
part of our work (Section 3.1), the performance of the PLS as alternative to the SVM
to creating ensemble members, focusing on oblique decision trees.

An alternative to enable a faster pedestrian detection independently of features
and the classifier utilized are two main class: parallelization and use of GPUs [Masaki
et al., 2010; Benenson et al., 2012b], and filtering regions of interest [Hou and Zhang,
2007; Silva et al., 2012; de Melo et al., 2014]. The latter is a simple but effective
manner of speeding up the detection. In the next paragraph, we review the main
filtering approaches applied to object recognition tasks.

Based on the observation that different images present similar log spectrum, Hou
and Zhang [2007] proposed a filtering approach to remove the redundant information
and preserve the non trivial parts of the scene. Their saliency detector aims at reducing
the computational cost without knowing any prior information regarding the image.
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To find objects in the image I, the authors applied a threshold, τ , on the saliency map
S(I). This threshold was empirically estimated as τ = 3E(S(I)), where E represents
the average of intensity in the saliency map. Silva et al. [2012] proposed an extension
of Hou and Zhang [2007] to pedestrian detection, where a saliency map was build for
multiple scales. Different from of Hou and Zhang [2007], Silva et al. [2012] computed
τ based on a trade-off between false negative and selected regions. Following a dif-
ferent direction, de Melo et al. [2014] proposed a random filtering based on a uniform
distribution. Their work demonstrated that selecting 14% of all candidate windows1 is
enough to cover around 83% of the people on the INRIA Person dataset. Moreover, the
authors proposed a method named location regression where each window is displaced
by δx and δy adjusting itself better on the pedestrian improving the detection. Also
aiming to discard candidate windows, Singh et al. [2012] employed a filtering technique
to remove regions of the images unlikely to contain objects. In their work, the energy
gradient is utilized to discard regions of the image (named patches) with low energy
(e.g sky patches). Even though effective, it is unclear which filters are more appropri-
ate for a given detector since there are not studies evaluating this relationship. This
motivated the second part of our work (Section 3.2), where we evaluate, compare and
improve the filtering approaches described above.

Another line of research that has been explored in pedestrian detection is the use
of high level information regarding the objects in the scene to improve detection. Since
these approaches are used after the detection, we can call themselves of post-processing
approaches. The high level information in post-processing approaches can be obtained
by using the raw response of a single detector [Schwartz et al., 2011] or by combining
distinct detectors [Li et al., 2010]. While Schwartz et al. [2011] proposed an approach to
learn a classifier using the raw responses of a general pedestrian detector, Li et al. [2010]
combined several pre-trained general object detectors, aiming at producing a powerful
image representation. The authors noted that distinct detectors yielded complementary
information achieving a better scene classification.

The combination of results obtained by multiple detectors has also been explored
for pedestrian detection. Ouyang and Wang [2013] proposed a method to combine
multiple detectors into a single detector to address the problem of groups of people.
Their method learns the unique visual pattern of occluded regions using the responses
of other detectors. In addition, Jiang and Ma [2015] combined multiple detectors via
a weighted-NMS algorithm. In contrast to the traditional non-maximum suppression
algorithms, the weighted-NMS does not simply discard the window with lower score

1It is usual to used the terms detection windows and candidate windows to denotes the regions of
the image where will performed features extraction and classification.



10 Chapter 2. Related Work

(given the Jaccard coefficient), but it uses the score to weight the kept window.
The successful results of approaches such as in [Li et al., 2010; Schwartz et al.,

2011; Ouyang and Wang, 2013; Jiang and Ma, 2015] rely on the hypothesis that re-
gions containing a pedestrian have a strong concentration of high responses, different
from false positive regions, where the responses have a large variance (low and high
responses). Inspired by these observations, the last part of this work proposes a novel
late fusion method, the Spatial Consensus, to capture additional information provided
by a set of detectors of simpler and low computational cost manner, since it does not
require the employment of machine learning techniques.

In the work proposed by Jiang and Ma [2015], the candidate windows without
overlap are preserved, which might increase the miss rate. This occurs because it is
expected that the false positives of distinct detectors reside in dissimilar regions at the
scene. Therewith, it will not be overlapped and consequently will not be suppressed
by the weighted-NMS, keeping the false positive of both the detectors, increasing the
miss rate. On the other hand, in our Spatial Consensus approach, we remove windows
without overlapping (windows that do not present spatial consensus when multiple
detectors are considered), improving the detection since the likelihood of false positives
provided by distinct detectors be isolated is high.
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Chapter 3

Methodology

An overview of our methodology is summarized in Figure 3.1, where we show at which
stage of pipeline the described method is operating. In Section 3.1, we introduce a

Detector Output 2

Detector Output N

Detector N

Input Image

Human
Non-Human

Scale Pyramid
Dense Sampling 
Sliding Window

Classification
Features 

Extraction

Candidate 
Windows

Filtering Stage

Detector 2

Input Image

Human
Non-Human

Scale Pyramid
Dense Sampling 
Sliding Window

Classification
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Windows

Filtering Stage

Detector 1

Input Image

Human
Non-Human

Scale Pyramid
Dense Sampling 
Sliding Window

Classification
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Extraction

Candidate 
Windows

Filtering Stage

Section 3.1 Section 3.2

Detector Output 1

Spatial 
Consensus

Section 3.3

Figure 3.1. Pipeline detection and its respective section. Red dashed lines
denotes where our work operates.

brief mathematical definition of the PLS, the main features of the oblique decision tree
and how the oRF-PLS and oRF-SVM are built, respectively. Section 3.2 describes the
steps performed by each filtering approach evaluated as well as its properties. Finally,

13
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in Section 3.3, we present our proposed late fusion algorithm to combine multiple
detectors.

3.1 Oblique Random Forest with Partial Least

Squares

This section starts by giving a brief mathematical definition of the Partial Least Squares
(PLS). Afterwards, we describe the features of the oblique random forest as well as its
build process. Last, we describe how to employ the PLS and SVM with the oblique
random forest and an adaptive bootstrapping procedure to improve the performance
of the oblique random forest.

3.1.1 Partial Least Squares

The PLS is a technique widely employed to model the relationship between variables
(features) utilized in several application areas [Rosipal and Krämer, 2006]. A brief
definition of the PLS is shown below, detailed mathematical definitions can be found
in Wold [1985] and Rosipal and Krämer [2006].

Let X ⊂ Rm be the matrix representing n data in m − dimensional space of
features, y ⊂ R be the label class, in this work a 1− dimensional vector. The method
decomposes X and y as

X = TP T + E, y = UqT + f, (3.1)

where T and U are n × p matrices of variables in latent space, p is a parameter of
algorithm. P and q corresponds to matrix m× p and vector 1× p of loadings, in this
order. The residuals are represented by E and f matrices of size n × m and n × 1,
respectively. The PLS, constructs a matrix of weight W = {w1, w2, ..., wp}, where
the ith column represents the maximum covariance (cov) between the ith element of
the matrix T and U as denotes the Equation 3.2. This procedure is made using the
nonlinear iterative partial least squares (NIPALS) algorithm [Wold, 1985].

[cov(ti, ui)]
2 = max

wi

[cov(Xwi, y)]2 (3.2)

Besides dimensionality reduction, the PLS can be used for regression [Schwartz
et al., 2011; de Melo et al., 2014], applying the matrix of weight W on the feature
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vector, vi. To this end, first we compute the regression coefficients, βm×1,

β = W (P TW )−1T Ty, (3.3)

then the regression response to a features vector vi is

yvi = ȳ + βTvi, (3.4)

where ȳ represents the average of y.
An important aspect of the PLS regarding the traditional dimensionality reduc-

tion techniques, e.g, principal component analysis (PCA) [Shlens, 2005], is that it con-
siders the class label in the construction process of the matrix of weights W . Schwartz
et al. [2009] showed that the PLS is able to separate data better than PCA, in the
pedestrian detection context. In view of their results [Schwartz et al., 2009], we opt to
utilize the PLS as dimensionality reduction technique as well as regression model.

3.1.2 Oblique Random Forest

Figure 3.2 illustrates the main advantage provided by oblique random forest (oRF). As
can be observed, the samples are separated by oriented hyperplanes (Figure 3.2 (b)),
achieving a better partition of the space that induces to shallower trees.

(a) (b)

Figure 3.2. Decision tree split types (the bars represent the information gain).
(a) Orthogonal split, tree with depth 2. (b) Oblique split, tree with depth 1.

The steps performed to construct the decision trees composing the oRF are the
following. First, we employ feature selection on the data received by the tree. As
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noticed by Breiman [2001] and Criminisi and Shotton [2013], this technique ensures
decorrelation (or diversity) between the trees, presenting an important contribution to
improve the accuracy. In particular, the bagging mechanism also provides diversity
on the random forest [Breiman, 2001]. However, as reported by Criminisi and Shotton
[2013], several works are abandoning the use of such method. Therefore, in this work we
discard the use of bagging since a considerable number of samples is required to build
each oblique decision tree. Second, a starting node (root), Rj, is created with all data.
The creation of a node estimates a decision boundary (hyperplane) to separate the
presented samples according to their classes. Third, the data samples are projected onto
the estimated hyperplane and a threshold τ is applied on its projected values splitting
the samples between in two children (Rjr, Rjl). The samples below this threshold are
sent to the left child, Rjl, and samples equal or above to the threshold are sent to its
right child, Rjr. This procedure is recursively repeated until the tree reaches a specified
depth or another stopping criterion.

To estimate the threshold that better separates the data samples, we employ the
gini index as quality measure. The gini index is computed in terms of

∆L(Rj, s) = L(Rj)−
| Rjls |
| Rj |

L(Rjls)−
| Rjrs |
| Rj |

L(Rjrs), (3.5)

where

L(Rj) =
K∑
i=1

lji (1− l
j
i ), (3.6)

in which s ∈ S (S is a set of thresholds), K represents the class number and lji is the
label of class i at the node j. We choose gini index because it produces an extremely
randomized forest [Criminisi and Shotton, 2013].

Once the trees have been learned, given a testing sample v, each node sends it
either to the right or to the left child according to the threshold applied to the projected
sample. For a tree, the probability of a sample to belong to class c is estimated
combining the responses of the nodes in the path from the root to the leaf that it
reaches at the end. The final response for a sample v presented to the forest is given
by

l(c|v) =
1

F

F∑
i=1

li(c|v), (3.7)

where F is the number of trees composing the forest.

To build each node in an oblique decision tree associated with PLS, the samples
P received by a node have its dimension reduced to a latent space p-dimensional using
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PLS. The value to p is set by validation (see Section 4.2.2). Subsequently, the regression
coefficients β are estimated using the Equation 3.4. Finally, the best threshold to split
the training data samples, is obtained using the gini index on the regression values
given by Equation 3.4.

The difference to build the oRF-SVM is that the received data samples do not
have their dimensionality reduced and instead computing the regression coefficients,
a linear SVM1 is learned at each tree node. The remaining of the process is equal.
This way, the approaches can be compared only in terms of better data separation and
generalization.

3.1.3 Boostrapping

The idea of bootstrapping consists in retraining an initial model F , using negative
sample considered hard to classify (hard negatives samples). These hard negative
samples are found according to a threshold applied on the prediction performed by F
in a pool of negative examples S. The samples above of this threshold are introduced
into a set N . It is important to mention that this set S are negative samples distinct
of the negative examples used to generate the initial model F . Once model F classified

Algorithm 1: Bootstrapping
input : Samples to hard negative mining S, Iterations K
output: Forest F

1 for iteration = 1 until K do
2 Find hard negatives samples (N) in S, using the current forest F .
3 X = P ∪N , where P is the set of positive samples.
4 Train n new trees using X.
5 Add these new trees n into current forest F .
6 iteration = iteration+ 1.
7 end

all the negative examples in S, it is updated using the initial positives samples and
the samples in set N . This procedure is repeated K times. Algorithm 1 is a variation
of the bootstrapping proposed by Marín et al. [2013] focused on random forest and
summarizes the steps above mentioned. Our experiments (Section 4.2.3) showed that,
for each bootstrapping iteration, the log-average miss-rate decreases (lower is better).
However, once four iterations are reached, the accuracy saturates.

1We are using linear SVM because it has been shown appropriate to pedestrian detection [Dalal
and Triggs, 2005; Dollár et al., 2012; Benenson et al., 2014].
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In particular, our bootstrapping procedure ensures diversity among the trees at
the forest, since in each iteration different negative samples are utilized to produce n
new trees, as we explained before.

3.2 Filtering Approaches

This section describes each filtering approach and its properties. The following filtering
approaches are used in our study: the entropy filter, the magnitude filter, the random
filtering and the saliency map based on spectral residual. A common feature among
them is illustrated in Figure 3.3, in which all removed regions do not contain the object
of interest (in our context, the pedestrian).

(a)Input image (b)Entropy filter

(c) Magnitude filter (d) Saliency map based on spectral residual

Figure 3.3. Translucent areas demonstrate regions eliminated by filtering stage
for different filtering approaches. Some filters removed more regions than others,
yet, all preserved the pedestrian (the random filtering, also considered in this
work, was not showed since it is difficult to be visualized).

3.2.1 Entropy Filter

The main idea of this filter is to extract a histogram of gradient orientation for each
detection window to reject those windows related with histograms presenting low en-
tropy. For instance, homogeneous (flat) regions in the image present lower entropy due
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to its more uniform distribution when compared with windows containing a human
(rich on edges in a given orientation).

The computation process is the following. Initially, we compute the image deriva-
tives Ix′ and Iy′, regarding the x and y, using a 3×3 Sobel mask [Gonzalez and Woods,
1992]. Then, we estimate the orientation (0◦ to 180◦) for each pixel i using

θi = arctan

(
Iy′(x,y)
Ix′(x,y)

)
. (3.8)

Afterwards, we generate a histogram h incrementing its respective bin θi by the mag-
nitude of the pixel2 (the number of bins was set experimentally to be nine). Finally,
we normalize h using the L1-norm to become a probability distribution and estimate
its entropy as

E(w) = −
bins∑
i=0

(a(hi) log(a(hi))), (3.9)

where a(hi) denotes the value of the normalized bin i and E(w) is the entropy to
detection window w.

3.2.2 Magnitude Filter

The average of the gradient magnitude within a detection window can be used as a
cue for discriminating humans from the background. As illustrated in Figure 3.4, there
is a gap between the magnitude values of regions containing background and regions
containing humans. Therefore, we can utilize this interval to reject detection windows
with background. This is a similar procedure that Singh et al. [2012] employed to
discard image patches without relevant information.

2We accumulate the magnitude to soften the contribution of noisy pixels to h.

 M = 52.69 M = 3.94  M = 34.32

Figure 3.4. Different regions of the image (detection windows) captured by
sliding windows approach and their respective magnitude images where M is the
average gradient magnitude computed from each region using Equation 3.10.
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To this filter, we initially compute the image derivatives as in the entropy filter.
Then, we sum all values inside the detection window as

M(w) =
1

D

∑
i

∑
j

(√
I2x′(i, j) + I2y′(i, j)

)
, (3.10)

where D is the window area.
This filter is relatively simple and our experiments demonstrate that a large

number of windows can be discarded. Besides, it presents two important aspects: (1)
when using integral images, the average magnitude can be computed using only four
arithmetic operations yielding a faster filtering stage; (2) the magnitude is a feature
widely used to create the image descriptors, such as the HOG, therewith detectors
based on such descriptors do not have extra computational cost after this filtering
stage.

3.2.3 Random Filtering

The random filtering technique consists in randomly selecting a sufficiently large
amount m̃ of windows from the set of detection windows W , which has cardinality
m = |W | [de Melo et al., 2014]. The approach relies on the Maximum Search Problem
theorem [Schölkopf and Smola, 2002] to ensure that every person will be covered. The
theorem provides a set of tools that allows to estimate the required number of windows
m̃ to be selected.

The problem is formulated as follows. Let W = {w1, . . . , wm} be the set of
m detection windows generated by the sliding window approach. In this problem,
one needs to find a window ŵi that maximizes the criterion F [wi], which evaluates
whether a detection window covers a pedestrian or not. The problem is usually solved
by evaluating each window wi regarding such criteria, thus requiring m evaluations.
However, such evaluations are expensive since the number of windows is large. The
Maximum Search Problem states that one does not need to evaluate every window. By
selecting a random subset W̃ ⊂ W sufficiently large, it is very likely, that the maximum
over W̃ will approximate the maximum over W (with a confidence η).

The size m̃ = |W̃ | of this random selection can be estimated by

m̃ =
log (1− η)

ln (n/m)
, (3.11)

where η is the desired confidence, n denotes the number of elements in W which has
F [wi] smaller than the maximum of F [wi] among the elements in W̃ .
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In their initial work, de Melo et al. [2014] proposed an extra stage, the location
regression, where each selected windows is displaced by δX and δY adjusting itself
better on the pedestrian. Despite this procedure improve the detection performance,
the δX and δY values must be previously learned in a training step. Hence, since we
are evaluating the random filtering only on the selection stage and the focus of our
study is to evaluate simple filtering approaches, we disregard the location regression
since it depends on previous learning.

3.2.4 Salience Map based on Spectral residual

In their work, Hou and Zhang [2007] observed that images share the same behavior
when viewed from the log spectral domain. Using this feature, the authors proposed a
method to capture the saliency regions of the image removing redundant information
and preserving the non-trivial regions in the scene. Following Silva et al. [2012], we ap-
ply the saliency map on multi-scales as this procedure outperforms the original method
proposed in Hou and Zhang [2007]. Moreover, we demonstrate that the choice of the
threshold used to discard regions of the image is essential to reject a large number of
detection windows without compromising accuracy.

As mentioned in Chapter 2, the proposed threshold used to consider a detection
window valid is based on the global mean of the saliency map. In this work, we propose
two alternative thresholds: (1) the amount of the saliency pixels within a detection
window is greater or equal to one, and (2) the sum of the saliency pixels within a
detection window is greater than 10% of its dimension. In our experimental results,
we show that the latter proposed thresholding allows to discard a larger number of
candidate windows, without affecting the detection rate.

Figure 3.5. Sliding window approach on saliency map.

To this filtering stage, we apply the sliding window approach as following. First,
we generate a saliency map S for the image I following the process proposed in Hou and
Zhang [2007]. Afterwards, we scan S(I) via the sliding window technique. Then, the
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image is downsampled by a scale factor and the process above is repeated, as illustrated
in Figure 3.5. In other words, we can consider which each output image of the scale
pyramid (see Figure 1.1) is a S(I).

3.3 Spatial Consensus

This section describes the steps of our proposed algorithm to combine multiple-
detectors iteratively. Using the responses coming from these detectors, we weight their
scores and give, giving more confidence to candidate windows that really belong to a
pedestrian (our hypothesis is that regions containing pedestrians have a dense concen-
tration of detection windows from multiple detectors converging to a spatial consensus)
and eliminating a large amount of false positives, as illustrates Figure 3.6.

Detector 1 Detector 2 Detector 3

Figure 3.6. Detection results and their respective heat map. From the left to
the right. First image only one detector is being used to generate the heat map,
but in the second and third images two and three detectors, respectively, are used
to generate the heat map. Each bounding box color represents the results of a
distinct detector. As can be noticed, the addition of more detectors reduces the
confidence of false positives with similar human body structure and reinforces the
pedestrian hypothesis (best visualized in color).

The first issue to be solved when performing detector response combination (late
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fusion) is to normalize the output scores to the same range because different classifiers
usually produce responses in a different ranges. For instance, if the classifier used
by the ith detector attributes a score of [−∞,+∞] to a given candidate window and
the classifier of the jth detector attributes a score between [0, 1], the scores cannot be
combined directly. To address this problem, in this work we employ the same procedure
used by Jiang and Ma [2015] to normalize the scores. The procedure steps are described
as follows. First, we fix a set of recall points, e.g, {1, 0.9, 0.8, 0.7, ..., 0}. Then, for each
detector, we collect the set of scores, τ , that achieve these recall points. Finally, we
estimate a function that projects τj onto τi (details in Section 4.4.1).

After normalizing the scores to the same range, we combine the candidate win-
dows of different detectors as follows. Let detroot be the root detector from which the
window scores will be weighted based on the detection windows of the remaining de-
tectors in {detj}nj=1. For each window wr ∈ detroot, we search for windows wj ∈ detj
that satisfies a specific overlap according to the Jaccard coefficient given by

J =
area(wr ∩ wj)

area(wr ∪ wj)
, (3.12)

where wr and wj represent windows of detroot and detj, respectively. Finally, we weight
wr in terms of

score(wr) = score(wr) + score(wj)× J. (3.13)

The process described above is repeated n times, where n is the number of detectors
besides the root detector. Algorithm 2 represents the aforementioned process.

Regarding the computational cost, the asymptotic complexity of our method is
denoted by

O(cwroot ×
n∑

j=1

cwj) = O(cwroot × p) = O(cw2),

where cwroot is the number of candidate windows of detroot, cwj denotes the number of
detection windows of the jth detector and p is the amount of all candidate windows in
{detj}nj=1. Similarly, the approach proposed by Jiang and Ma [2015] (weighted-NMS
method) presents complexity of O(cw log cw + cw2). Although both methods present
a quadratic complexity, p is extremely low because the non-maximum suppression is
employed for each detector before presenting the candidate windows to Algorithm 2
(see Section 4.4.10), which renders the computational cost of both our Spatial Con-
sensus method and the baseline approach [Jiang and Ma, 2015] to be negligible when
compared with the execution time of the individual pedestrian detectors.

Our approach differs from the weighted-NMS method [Jiang and Ma, 2015] in two
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Algorithm 2: Spatial Consensus
input : Candidate windows of detroot and {detj}nj=1

output: Updated windows of detroot
1 for j ← 1 to n do
2 project detj score to detroot score;
3 foreach wr in detroot do
4 foreach wj in detj do
5 compute overlap using Equation 3.12;
6 if overlap >= σ then
7 update wr score using Equation 3.13;
8 end
9 end

10 if wr does not presents any matching then
11 discard wr;
12 end
13 end
14 end

main aspects: (1) instead of inserting the candidate windows of detroot and detj into a
single set and performing weighted-NMS (see Section 4.4.3), we fix detroot and weight
its windows using the detj windows responses. In this way, we reduce the possibility
of errors added by choosing a window that covers poorly the pedestrian according to
the ground-truth, as illustrated in Figure 3.7 (a) - the suppression made by weighted-
NMS algorithm, the chosen window will be the orange and thus we lose the pedestrian,
generating one false positive and one false negative; (2) in the weighted-NMS [Jiang
and Ma, 2015], windows without overlap will be kept, as illustrated the Figure 3.7 (b).
On the other hand, our approach (step 11 in Algorithm 2) remove such a window even
if it presents high confidence score. This is the key point that enables our approach to
be powerful in eliminating hard false positives.

3.3.1 Removing the Dependency of the Root Detector

According to the algorithm described in the previous section, the execution of the SC
algorithm requires the selection of a root detector. To address this restriction, we
propose a generation of a “virtual” root detector, referred to as virtual root detector.
The idea behind building this virtual root detector is to increase the flexibility of the
algorithm – this way, we do not need to specify a particular pedestrian detector as
input to the SC algorithm (see Algorithm 2).

To generate windows for the virtual root detector (detvr), let us consider the
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set of detectors {detj}nj=1. For a detection window wj
i ∈ detj with dimensions

(x, y, width, height), we search for overlapping windows in the remaining detectors
(wl

i, l = 1, 2, ..., k) to create a set of windows that will be used to generate a single
window belonging to the detvr using

wvr
i =

1

k

k∑
l=1

wl
i, (3.14)

where k is the number of overlapping windows to the window wj
i . Finally, we assign

a constant C (for instance, C = 1) to this novel window. This constant contains the
score of this window and its value will be updated after executing the SC algorithm.

Once the windows of the virtual root detector had been generated, we can execute
the SC algorithm. However, the steps 10 to 11 of the algorithm are inoperative, since
we will always have windows presenting overlapping.

Score:  0.89 

Score: 0.75 

Score = 0.9

Score = 0.7

Score = 0.8

(a) (b)

Figure 3.7. Different aspects between our proposed Spatial Consensus algorithm
and the weighted-NMS [Jiang and Ma, 2015]. Yellow and orange boxes indicate
the detection coming from detroot and detj , respectively, and the dashed green
box shows the ground-truth annotation. (a) Our Spatial Consensus algorithm
will maintain the yellow box (true positive), since this window belongs to detroot,
while the weighted-NMS will maintain the orange box (false positive) because it is
the window with higher score, leading to higher miss rate and reduced recall; (b)
The SC algorithm will remove the false positive in yellow since it has no spatial
support of other detectors, while the weighted-NMS will keep this false positive
window due to its high score (best visualized in color).





Chapter 4

Experimental Results

We start this chapter describing the benchmarks employed through of our work. Then,
we present the experiments, results and discussion regarding the oRFs, filtering ap-
proaches and spatial consensus, respectively.

The majority of the methods were implemented using the Smart Surveillance
Framework (SSF) [Nazare et al., 2014], except to generate the saliency map (see Section
3.2.4), where we use its version that is available online1.

To measure the detection accuracy, we employed the standard protocol evalua-
tion used by state-of-the-art called reasonable set (a detailed discussion regarding this
protocol of evaluation can be found in [Dollár et al., 2009; Dollár et al., 2012]), in
which only pedestrians with at least 50 pixels high and under partial or no occlusion
are considered. The reasonable set measures the log-average miss rate of the area un-
der the curve on the interval from 10−2 to 100 (low values are better). However, in
some experiments, we report the results using the interval from 10−2 to 10−1. The area
under curve in this interval represents a very low false positive rate (that is a require-
ment to real applications, e.g., surveillance, robotics and transit safety), this way, we
evaluate the methods under a more rigorous detection. We used the code available in
the toolbox2 of the Caltech pedestrian benchmark to perform the evaluations.

4.1 Datasets

We compare our work with the state-of-the-art methods on three challenging widely-
used pedestrian detection benchmarks: INRIA Person, ETH and Caltech. An extra
dataset was used as validation set (TUD pedestrian) to calibrate the oRF parameters.

1http://www.saliencytoolbox.net/
2www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/

27
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However, we prefer not report the results of the other methods in this dataset since it
is more utilized to pedestrian detectors that are part based [Andriluka et al., 2008].

Figure 4.1 illustrates the different scenarios of the datasets. As can be noticed,
the datasets present high variability in the terms of illumination, human pose and
background, rendering the pedestrian detection a challenging task.

INRIA Person dataset ETH Pedestrian dataset

Caltech Pedestrian detection TUD Pedestrians

Figure 4.1. Image examples from the datasets used in this work.

INRIA Person dataset. Proving rich annotations and high quality images, INRIA
Person dataset still remains as the most employed dataset in pedestrian detection [Dalal
and Triggs, 2005]. This dataset provides both positive and negative sets of images
for training and testing, where there is a wide variation in illumination and weather
conditions.

ETH Pedestrian dataset. Composed of images with size 640× 480 pixels, the ETH
dataset provides stereo information. In this dataset are available four video sequences,
one for training and three for test [Ess et al., 2007]. The large pose and people height
variation make this dataset a challenging pedestrian detection dataset.

Caltech Pedestrian detection. Nowadays, this is the most predominant and chal-
lenging benchmark in pedestrian detection. Caltech dataset consists of urban environ-
ment images acquired from a moving vehicle [Dollár et al., 2012]. This dataset provides
about 50, 000 labeled pedestrians. Moreover, it has been largely utilized by methods
designed to handle occlusions since such labels are available.

TUD Pedestrians. This dataset provides 250 images for test, all with dimension
of 640 × 480 pixels. Its training samples provide labeled human parts, hence, it is
commonly used in part based approaches [Andriluka et al., 2008]. Since its images are
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composed from people of side view, we are using this dataset as validation set (only
to the experiments of the oRFs), aiming at measure the power of generalization of the
models by considering that they were learned on side view samples.

4.2 Oblique Random Forest Evaluation

This section details the experimental setup utilized to validate our proposed oblique
random forest as well as the comparison between our method with the baseline and
the state-of-the-art.

4.2.1 Feature Extraction

We extract the HOG descriptor for each detection window following the configuration
proposed by Dalal and Triggs [2005], with blocks of 16×16 pixels and cells 8×8 pixels.
This configuration results in a descriptor of 3780 dimensions. We are using these 3780

features during the feature selection process (see Section 3.1.2), for both the oblique
random forest to provide a comparison not influenced by the features.

4.2.2 Tree Parameters

To tune the parameters for both oRFs, we adopted the grid search technique where
each parameter is placed as a dimension in a grid. Each cell in this grid represents a
combination of the parameters.

In this experimental validation, we focus on the impact of two aspects in our
forests: numbers of trees and number of features used in the feature selection stage.
We are using the term nF to denote the number of features randomly selected to create
a tree node (as explained in Section 3.1.2). To both oRFs, the maximum depth allowed
at the growing stage of the tree is 5. In some preliminary experiments, we noticed that
increasing the depth, the gain does not improve considerably. Therefore, we fixed this
depth, which reduces considerably the search space in the grid search technique. On
the validation dataset, the best parameters to oRF-SVM were using 200 trees and nF
= 400, where it achieved a log-average miss rate of 41.67%. The oRF-PLS obtained the
best results with 40 trees and nF = 550, presenting a log-average miss rate of 38.18%.

Differently from oRF-SVM, the oRF-PLS has an extra parameter to be tuned,
the number of dimensions, p, required by PLS technique (see Section 3.1.1). By eval-
uating the accuracy in the validation set, the best value found to p was of 6. In our
experiments, we noticed that varying p slightly the log-average miss rate increases sub-
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stantially. For instance, modifying p from 6 to 8 the log-average miss rate goes from
38.18% to 42.98%. Therefore, this is a crucial parameter to oRF-PLS.

It is important to mention that the number of trees composing the forest is
considering bootstrapping iterations (see Section 3.1.3).

4.2.3 Bootstrapping Contribution

As can be noticed in Figure 4.2, the log-average miss rate presents a significant reduc-
tion to each bootstrapping iteration. From the initial model to the third iteration, the
log-average miss rate decreases 16 percentage points (p.p) to oRF-PLS against 17.43

p.p. to oRF-SVM. This improvement is achieved since in each bootstrapping iteration,
the forest finds more hard negative samples and these examples, when used to produce
more trees, allow the current forest be more robust to false positives. In addition, for
each bootstrapping iteration, the computational cost increases since the forest becomes
larger, hence, more projections are performed.
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Figure 4.2. Log-average miss rate achieved in each bootstrapping iteration using
oRF-PLS and oRF-SVM, respectively, on validation set.

4.2.4 Influence of the Number of Trees

Figure 4.3 shows the log-average miss rate obtained by each approach on the validation
set, as a function of the number of trees composing the forest. According to the results,
with the same number the trees (except 200), the detection accuracy of oRF-PLS
outperforms the oRF-SVM. Furthermore, to achieve competitive results, the oRF-SVM
demands a larger number of trees, which renders the computational cost extremely
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Figure 4.3. Log-average miss-rate (in percentage points) on the validation set
as a function of the number of trees.

high (see Section 4.2.5). In addition, by computing the standard deviation of the log-
average miss rate, we can notice that the oRF-SVM is more sensitive to variation of
the number of trees to presenting a standard deviation of 10.58% while our proposed
method presented a standard deviation of 2.42%. Thus, the use of PLS to build oRF is
more adequate than use the SVM since it produces smaller and more accurate forests.

4.2.5 Time Issues

In this experiment, we show that the proposed oRF-PLS is faster than oRF-SVM. For
this purpose, we performed a statistical test (visual test [Jai, 1991]) among the time
(in seconds) to run the complete pipeline detection on an image of 640×480 pixels. To
each approach, we execute the pipeline 10 times and compute its confidence interval
using 95% of confidence. The oRF-PLS obtained a confidence interval of [270.2, 272.44]

against [382.72, 392.72] achieved by the oRF-SVM. As can be observed, the confidence
intervals does not overlap, showing that the methods present statistical differences
regarding the execution time, being the proposed method faster.

4.2.6 Comparison with Baselines

Our last experiment regarding the oblique random forest compares the proposed oRF-
PLS with traditional state-of-the-art pedestrian detectors [Dollár et al., 2012; Benenson
et al., 2014]. The first row in Figure 4.4 shows that our proposed method outperforms
traditional classifiers used in pedestrian detection, e.g., linear SVM (HOG+SVM [Wang
et al., 2009] and QDA (Pls [Schwartz et al., 2009]). Moreover, the oRF-PLS outper-
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forms a robust partial occlusion method, HOG+LBP [Wang et al., 2009], in 1.84 and
6.28 percentage points to the area in 10−2 to 100 and 10−2 to 10−1, respectively.

When evaluated on the ETH pedestrian dataset, showed in the second row in Fig-
ure 4.4, the accuracy of our method decreases. However, its result still overcomes the
oRF-SVM in 2.35 and 2.99 percentage points on the area in 10−2 to 100 and 10−2 to
10−1, respectively.

According to results showed in this section, the proposed oRF-PLS is able to
obtain equivalent (or better) results when compared with traditional classifiers.
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Figure 4.4. Comparison of our oRF-PLS approach with the state-of-the-art.
The first column reports the results using the log-average miss-rate of 10−2 to 100

(standard protocol). The second column report the results using the area of 10−2

to 10−1.
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4.3 Filtering Approaches

In this section, we evaluate several aspects of the filtering approaches and describe the
experimental setup employed throughout of our analyze.

4.3.1 Scaling Factor Evaluation

Pedestrians can have different heights in an image due to their distance to the cam-
era [Dollár et al., 2012]. Therefore, to ensure that all people have been covered by
detection windows, a common technique is to employ a pyramid scale, keeping fixed
the sliding window size. To generate this pyramid, we employ an iterative procedure
that scales the image by a scale factor α, in which the new image is generated by ap-
plying this scale factor to the previously generated image. In the first experiment, we
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Figure 4.5. Tradeoff between scale factor and number of windows generated for
a 640× 480 image.

evaluate the impact of the scaling factor on the number of detection windows generated,
as well as the miss rate obtained by the detectors.

Figure 4.5 shows that the number of windows increases quickly depending on α.
For a 640 × 480 image, while the sliding window algorithm generates 10 scales with
α = 1.15, this number increases to 171 scales when α = 1.01. Table 4.1 presents the
results achieved by the detectors at 100 false positive per image (FPPI), value commonly
used to report the results in pedestrian detection [Dollár et al., 2012; Benenson et al.,
2014].

The results indicate that denser samplings yield a lower miss rate and emphasizes
the use of filtering approaches, which enables the usage of small values for α, since large



34 Chapter 4. Experimental Results

Table 4.1. Miss rate obtained at 100 FPPI with different scale factors.

Scale factor α HOG+SVM PLS+QDA oRF-PLS oRF-SVM
1.15 0.34 0.33 0.28 0.26
1.10 0.33 0.29 0.28 0.24
1.05 0.31 0.29 0.27 0.23
1.01 0.29 0.27 0.25 0.22

part of the generated windows will be removed in the filtering stage and will not be
presented to the classifier. However, throughout of the next experiments, we are using
α = 1.15, since it is a typical value used in pedestrian detection [Benenson et al., 2014]
and, this way, our results can be compared directly with the original detectors.

4.3.2 Saliency Map Threshold

Our next experiment evaluates the power of the saliency map to discard candidate
windows using different threshold approaches (as discussed in Section 3.2.4). According
to the results showed in Figure 4.6, the proposed threshold approach is able to discard
a larger number of detection windows, demonstrating to be more suitable than the
threshold approach proposed in [Hou and Zhang, 2007]. It is important to mention
that all the thresholds evaluated have been set to achieve the same recall to provide a
fair comparison.
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Figure 4.6. Threshold approaches analyzed to be used as rejection criteria in
the saliency map.
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4.3.3 Number of Discarded Windows

Figure 4.7 presents the percentage of rejected windows achieved by the filters assuming
that an ideal detector3 were to be used afterwards. In this experiment, we fixed α as
1.15, which generated a total of 15, 956, 718 detection windows for all testing images of
the INRIA person dataset. One may notice that some filters were able to reject more
than 30%, while preserving the same recall rate as obtained without window rejection.

According to the results in Figure 4.7, the entropy filter was able to reject a small
number of windows when compared to the other filters. Besides, this filter presented
the largest increase of miss rate when a larger percentage of detection windows were dis-
carded. The magnitude filter demonstrated to be effective to discriminate background
windows from humans. It was able to reject up to 50% of the candidate windows con-
serving the recall rate above 90%. The random filtering and saliency map presented a
powerful ability to reject candidate windows, discarding around 70% while keeping the
recall rate above of 90%.
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Figure 4.7. Relationship between rejection percentage and recall achieved by
filters (assuming that an ideal detector was employed after the filtering stage).

4.3.4 Filtering Approaches Coupled with Detectors.

Our last experiment regarding the filtering approaches evaluates the distinct behavior
of the filters when employed before different detectors. First, we defined ranges of
rejection percentages (30− 40, 41− 50 and 51− 60). We use these ranges to determine

3We consider an ideal detector, the one that if there were a detection window containing a person,
it would classify that window as such (presenting a person). Therefore, it would achieve the maximum
recall for any false positive per image rate.
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Table 4.2. Miss rate at 100 FPPI applying the filtering stage on the detec-
tors. Values between parentheses indicate the percentage of discarded detection
windows.

Entropy Magnitude R. Filtering S. Map

HOG+SVM
0.39(31%) 0.34(38%) 0.36(32%) 0.33(38%)
0.45(41%) 0.35(44%) 0.36(45%) 0.34(48%)
0.58(53%) 0.38(54%) 0.37(53%) 0.34(52%)

PLS+QDA
0.36(31%) 0.33(38%) 0.33(32%) 0.30(38%)
0.42(41%) 0.34(44%) 0.35(45%) 0.30(48%)
0.56(53%) 0.36(54%) 0.35(53%) 0.31(52%)

oRF-PLS
0.31(31%) 0.28(38%) 0.30(32%) 0.26(38%)
0.38(41%) 0.30(44%) 0.30(45%) 0.27(48%)
0.51(53%) 0.31(54%) 0.30(53%) 0.28(52%)

oRF-SVM
0.30(31%) 0.27(38%) 0.28(32%) 0.25(38%)
0.37(41%) 0.29(44%) 0.29(45%) 0.25(48%)
0.51(53%) 0.31(54%) 0.28(53%) 0.25(52%)

the same rejection ratio among the filters, since we are only interested in analyzing
the relationship between filter and detector. We reported the miss rate fixed at 100

FPPI. The results are reported in Table 4.2. In the evaluation of the number of
discarded windows, the random filtering outperformed all approaches. However, in
this experiment, the detectors performed poorly when evaluating the windows selected
by this approach. This happens due to its random essence, since windows that fit the
pedestrian might be slightly misplaced from the pedestrian’s center. Hence, as holistic
detectors are trained considering a centered window, the classifier assigns a low score
to that sample, even though it satisfies the evaluation protocol.

The results obtained indicate that for a fixed recall (Figure 4.7), each filter is able
to reject a percentage distinct of candidate windows, being the saliency map the most
efficient since it is able to discard a large number of candidate windows and reduce
the miss rate. Moreover, when more windows are discarded, the detectors are effected
differently according to filter being applied.

4.4 Spatial Consensus

This section starts by describing the steps required to execute the spatial consensus
algorithm, the parameters that affect its performance and the baseline utilized to com-
pare our proposed method, respectively. Finally, we compare our method with the
state-of-the-art and present its limitations.
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4.4.1 Preparing the Input Detectors

First, we need to define detroot and a set of detectors {detj}nj=1 (as explained in Section
3.3). Due to the large number of pedestrian detectors currently available, there are
many options to determine both detroot and {detj}nj=1 [Benenson et al., 2014; Dollár
et al., 2012]. In this work, we define these detectors as the top eleven best ranked
pedestrian detectors on the INRIA person dataset (Table 2.1). The best ranked detec-
tor, the SpatialPolling [Paisitkriangkrai et al., 2014], was set to be the detroot and the
remaining detectors were attributed to {detj}nj=1. The columns of Tables 4.3, 4.4 and
4.5 show the detectors used in {detj}nj=1 in each dataset4. In Algorithm 2, each detj is
considered one after another, iteratively, to weight the detroot.

At the score calibration step, we use the INRIA person dataset to acquire the
set of scores τ . Next, to map the {detj}nj=1 score to detroot score, we consider a linear
regression. From the scatter plot between τroot×τj, we observed that a linear regression
is a suitable choice to perform this mapping.

4Some top ranked detectors of INRIA are not available to the ETH and Caltech Datasets.

Table 4.3. INRIA Person Detectors Accumulation. The initials SC refers to our
proposed method and the initials W-NMS refers to our baseline the weighted-
NMS [Jiang and Ma, 2015]. The results are measured in log-average miss-rate
(lower is better).

σ S.Tokens Roerei Franken LDCF I.Haar SCCPriors NAMC R.Forest W. Channels V.Fast
SC (Ours) 10.78% 9.57% 9.44% 9.77% 9.54% 9.66% 9.92% 9.58% 9.10% 9.08%0.5 W-NMS 10.60% 11.22% 12.91% 12.42% 12.48% 12.37% 12.38% 14.70% 14.81% 14.11%
SC (Ours) 10.79% 8.85% 8.63% 9.21% 8.96% 9.30% 9.54% 9.17% 8.45% 9.75%0.6 W-NMS 10.12% 9.74% 11.75% 11.84% 12.72% 13.48% 13.65% 16.11% 14.81% 14.11%
SC (Ours) 14.98% 11.11% 10.56% 10.73% 10.61% 10.77% 10.94% 10.20% 9.60% 9.97%0.7 W-NMS 11.37% 10.01% 13.58% 14.81% 15.59% 16.14% 17.79% 24.88% 14.81% 14.11%

Table 4.4. ETH Detectors Accumulation. Columns with ”−” express detection
results not available on the ETH dataset. The initials SC refers to our proposed
method and the initials W-NMS refers to our baseline the weighted-NMS [Jiang
and Ma, 2015]. The results are measured in log-average miss-rate (lower is better).

S.Tokens Roerei Franken LDCF I.Haar SCCPriors NAMC R.Forest W. Channels V.Fast
SC (Ours) − 35.63% 34.60% 33.61% − − − 34.15% − 33.98%
W-NMS − 35.19% 39.69% 40.93% − − − 48.75% − 49.31%

Table 4.5. Caltech Detectors Accumulation. Columns with ”−” express detec-
tion results not available on the Caltech dataset. The initials SC refers to our
proposed method and the initials W-NMS refers to our baseline the weighted-
NMS [Jiang and Ma, 2015]. The results are measured in log-average miss-rate
(lower is better).

S.Tokens Roerei Franken LDCF I.Haar SCCPriors NAMC R.Forest W. Channels V.Fast
SC (Ours) − 36.90% 37.90% 27.86% 27.10% 24.73% 24.60% 23.78% 23.67% −
W-NMS − 40.58% 40.54% 48.75% 49.64% 45.94% 44.33% 44.13% 44.68% −
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Due to difficulty to obtain the exact results due to parameter setup, we preferred
not to implement some detectors5. Therefore, throughout of the experiments we are
using the results provided by authors and this fact forced us to use INRIA test to
calibrate the scores only for one of ours experiments (to produce Table 4.3). However,
once the scores are calibrated, we use the estimated regression on the other datasets.
To the domain knowledge experiment (see Section 4.4.7), we utilize a random video
subsequence available in the ETH and Caltech to calibrate the scores.

It is important to mention that before combining the detectors by Algorithm 2
or by the weighted-nms algorithm Jiang and Ma [2015], we assume that all detectors
performed non-maximum suppression (NMS) individually. This initial NMS is per-
formed to suppress overlapping detections from the same detector and that is essential
to reduce the number of candidate windows since it will influence the running time of
both algorithms.

4.4.2 Jaccard Coefficient Influence

The idea behind this experiment is to evaluate the influence of the threshold, σ, applied
to the Jaccard coefficient (step 6 of Algorithm 2). Increasing this threshold not only
forces that only windows better aligned with detroot contribute to the weight of its
windows, but also discards a larger number of windows since the likelihood of having
a match with windows in other detectors of {detj}nj=1 reduces. In this experiment,
we consider σ equals to 0.5, 0.6 and 0.7, as reported in Table 4.3. Furthermore, we
evaluate the influence of σ on the number of false positives, as shown in Figure 4.8.

According to the results, a more restrict (larger) σ reduces the number of false
positives since more candidate windows are removed. However, more true positives are
also discarded and the detection accuracy decreases slightly (see Table 4.3). According
to Figure 4.8, the detroot by itself obtained 1350 false positives and when ten detectors
were added with our algorithm, this value decreased to 1065 and 894 using σ = 0.6

and σ = 0.7, respectively. Nonetheless, according to Table 4.3, the log-average miss
rate increased from 9.75% to 9.97%. As shown in Table 4.3, the best results (aiming at
preserving the lowest miss rate) were obtained using σ = 0.6 for both methods. Thus
we consider this value for the experiments on ETH and Caltech datasets.

5This consideration also implicates because some results are not available for the ETH and Caltech
dataset (see Table 4.4 and 4.5 for details).
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Figure 4.8. Number of false positives as a function of the number of detectors
added and the threshold σ (results on INRIA Person dataset). The number of
false positives obtained by the detroot alone (without our method) is shown as
line because it is constant.

4.4.3 Weighted-NMS Baseline

The method proposed by Jiang and Ma [Jiang and Ma, 2015] can be described in four
main steps. First, the detection window responses of the combined detectors must be
normalized to the same score range. Then, the windows of both detectors are inserted
in a set U . Afterwards, U is sorted in descending order of the scores. Finally, when a
window at position i of U presents overlap higher than the threshold (σ) with a window
at position j of U (j > i + 1), the NMS process is applied and the window with the
lower score is discarded and its score contributes to the kept window (in the same way
that is performed in the step 7 of Algorithm 2).

The method proposed in Jiang and Ma [2015] accepts only two detectors as input.
Therefore, to enable multiple detectors, we insert all windows of the detectors that we
want to combine into U . To enable a fair comparison, we consider that the detroot
windows always is in U .

4.4.4 Spatial Consensus vs. weighted-NMS

In our experiments, we evaluate the performance of adding multiples detectors to ex-
tract the spatial consensus to improve the pedestrian detection. According to results
shown in Tables 4.3, 4.4 and 4.5, the weighted-NMS was better than our method when
adding only one detector to improve detroot. This occurs because the probability of
detection windows without overlapping is higher when few detectors are considered,
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Figure 4.9. Comparison between our proposed method with the baseline in
terms of improvement and depreciation (according to detroot) of the log-average
miss rate. Values above of the red dashed line denote improvement whereas values
below show deterioration.

thereby we may discard true positives windows (Step 11 of Algorithm 2), decreasing
the accuracy. However, when more detectors are added, our approach outperformed
considerably the weighted-NMS, achieving lower miss rates, as shown in the tables.

The weighted-NMS achieved the best results on the INRIA dataset when two
detectors were added, Sketch Tokens [Lim et al., 2013] and Roerei [Benenson et al.,
2013], outperforming the state-of-the-art by 1.48 p.p. On the other hand, the best
result of our approach is achieved adding nine detectors, improving the state-of-the-
art in 2.77 p.p. (8.45%). On the ETH dataset, the weighted-NMS method achieved
its best result, 35.19%, by combining Roerei and Franken detectors. However, this
combination was not enough to outperform the TA-CNN [Tian et al., 2015b] (current
state-of-the-art on this dataset with 34.98%). On the contrary, our approach reached
best results adding, beyond these two detectors, the LDCF [Nam et al., 2014] detector,
where we overcome the state-of-the-art in 1.37 p.p. (33.98%).

The best result of the weighted-NMS on the Caltech dataset was achieved com-
bining the Roerei and Franken detectors. However, this combination increased the
detroot miss rate from 29.24% to 40.54%. On the other hand, we achieved best results
adding eight detectors and decreasing the detroot miss rate from 29.24% to 23.16%. In
addition, the employment of our approach reduces the difference to most recent state-
of-the-art detector (CompACT-Deep [Cai et al., 2015] - 12.43%) from 16.81 to 10.73

p.p.

A summary of the comparison between the proposed method and the weighted-
NMS is shown in Figure 4.9. This figure synthesizes the best improvements and the
smallest deterioration of the miss rate for both methods in each dataset. We conclude
that our method is more suitable to perform fusion between multiple detectors than
the weighted-NMS [Jiang and Ma, 2015].
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4.4.5 Influence of a Less Accurate Detector

To evaluate the robustness of our method to the addition of a detector with high false
positive rate, we introduced the HOG detector right after the V. Fast [Benenson et al.,
2012a] on the INRIA person dataset. When it was inserted into {detj}nj=1, the miss rate
achieved by our method was of 8.90% against 16.78% of the weighted-NMS algorithm,
demonstrating the robustness our method to the addition of less accurate detectors.

4.4.6 Comparison with the State-of-the-Art

In this experiment, we compare the results of the proposed Spatial Consensus algorithm
with state-of-the-art methods, where we utilized the results provided by the authors in
their works, aiming at a fair comparison.

Figures 4.10(a) and 4.10(b) show that our algorithm outperforms the state-of-the-
art on the INRIA and ETH datasets achieving log-average miss-rate (low values are
better) of 8,45% and 33.61%, respectively in these datasets. In addition, Figure 4.10(c)
shows that our method achieves significant results on the Caltech dataset, improving
in 6.08 p.p. the detroot used (SpatialPooling).

An important goal of pedestrian detection is to significantly minimize false alarms
for applications such as video surveillance in which they may cause damage to envi-
ronment as well to humans [Angelova et al., 2015]. To indicate that our method is
suitable for the requirement of very low false positive rates, we report our results us-
ing the area under curve from 10−2 to 10−1 (values where the false positive rates are
extremely small). Figures 4.10(d), (e), and (f) show these results. As can be noticed,
our method further enhances the detection accuracy, demonstrating to be appropriate
to applications that need to operate at very low false positive rates.

4.4.7 Domain Knowledge

This experiment evaluates the impact of using domain knowledge regarding the dataset
to assign the detectors to detroot and to {detj}nj=1, i.e., instead of following the ordering
based on the INRIA dataset (as discussed in Section 4.4.1), we attribute the top ranked
detector to detroot and the remaining ten best ranked detectors to {detj}nj=1, according
to results achieved on that particular dataset. We call this procedure Spatial Consensus
+ Domain Knowledge (SC+DK).

Given the definition of the SC+DK, we will now describe the detailed configura-
tion where we achieved the best results on the ETH and Caltech dataset, respectively.
To the former dataset, we specified the TA-CNN [Tian et al., 2015b] detector as the
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detroot and the {detj}nj=1 was composed of the SpatialPooling and Franken [Mathias
et al., 2013] detectors. To the latter, the detroot was the CompACF-Deep detector [Cai
et al., 2015] and the {detj}nj=1 was composed of the DeepParts [Tian et al., 2015a] and
CheckerBoards+ [Zhang et al., 2015] detectors. It is worth mentioning that due to lack
of some results in the detection on the INRIA person dataset, in this experiment, we
utilized the own dataset to perform the score calibration stage (see Section 4.4.1).

According to the results shown in Figure 4.10(b) and 4.10(c), the use of this extra
knowledge, allowed our method to outperform all previously published state-of-the-art
methods in 7.66 and 0.32 p.p. on the ETH and Caltech datasets, respectively. Such
improvements are even more emphasized when considering the log-average miss-rate
from 10−2 to 10−1, as shown in Figure 4.10(e) and 4.10(f), where we outperformed the
state-of-the-art in 11.15 and 2.84 p.p. on the ETH and Caltech datasets, respectively.

4.4.8 Virtual Root Detector

Our last experiment evaluates the proposed approach to remove the requirement of
specify a root detector. Different from techniques that we presented so far, which use
the best pedestrian detector as root detector, in the virtual root detector approach,
referred to as SC+VR, we utilize it only to calibrate the scores (see Section 3.3).

Regarding the results presented in Figure 4.10, we can notice that the virtual root
detector outperforms the conventional approach, where an initial root detector must
be defined, in 0.5 p.p and 3.32 p.p. to INRIA and Caltech, respectively. To the ETH
dataset the log-average miss rate increased 0.13, in relation to conventional approach.

According to these results, we conclude that the virtual root detector enables the
SC algorithm has more flexibility, without compromising the accuracy.

4.4.9 Limitations of the Method

A limitation of our proposed method is that it was not necessarily able to improve the
detroot according to every single detj introduced. For instance, in the Caltech dataset,
our method does not outperform the SCCPriors [Yang et al., 2015] detector which was
one of the detectors added to weight the detroot windows. This occurs because detj can
cover pedestrians that detroot does not cover and as only detroot windows are considered
(Step 3 of Algorithm 2), even detj covering more pedestrians, it cannot help detroot in
this issue. It is important to mention that this limitation is only to the conventional
SC approach.
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Another question that affects both weighted-NMS and our method, is the high
variability of results for a particular detector in different datasets. For instance, ac-
cording to Figure 4.10(a) and Figure 4.10(b), the Roerei detector [Benenson et al.,
2013] is one of the best detectors on the INRIA and ETH datasets but its accuracy
drops considerably in the Caltech dataset, as can be seen in Figure 4.10(c). This be-
havior might interfere in our algorithm. For instance, according to Tables 4.3 and 4.4,
when introducing the Roerei to weight the detroot, the miss rate decreases, but for the
Caltech dataset, the miss rate increases (Table 4.5). This issue led us to use the order-
ing criterion (as discuss previously), since which we do not know whether determined
detector will have the same behavior on other datasets [Dollár et al., 2012; Benenson
et al., 2014]. Besides, using this ordination renders the SC more general whereas this
ordering can be fixed only once and utilized over other datasets.

4.4.10 Time Issues

As described in Section 3.3, the complexity of our method is equal to the weighted-
NMS. Although presenting a quadratic complexity, both methods run in real time
since the traditional NMS is performed for each individual detector before starting the
algorithms (see Section 4.4.1). Besides, the values of proot and p are corresponding to
the number of pedestrians at the scene, which is low, in general. To verify that these
values are extremely small, we collected the average of people per image in the INRIA
person and the ETH (seq#2) datasets. The values are 3.3 and 43.6, respectively (not
large enough to impact the computational time of our algorithm).

Since the values of p are small, our approach is able to run in real time. To show
that, we computed the time average to execute of the SC on a 640×480 image, using 10

detectors to compose {detj}nj=1 and without any parallelization technique. The SC runs
in 2.17 milliseconds on average, by executing this experiment 10 times. Additionally,
the most recent survey of computation cost at the detection pedestrian [Angelova et al.,
2015] showed that the faster detector presenting high accuracy is able to process 15

frames per second6, running on an NVIDIA K20 Tesla GPU [Angelova et al., 2015].
Based on these results, we conclude that our method is capable of improving the
detection results and could be fast to execute, even though our algorithm requires
results of individual detectors.

6Results provided by author.
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Figure 4.10. Comparison of our proposed approach with the state-of-the-art.
The first column reports the results using the log-average miss-rate of 10−2 to
100 (standard protocol). The second column reports the results using the area of
10−2 to 10−1.
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Conclusions

This work faces the problem of finding pedestrian in images. Throughout this work,
different methods are proposed and analyzed to address three main challenges listed
below.

The first one, it is to distinguish humans from background features. In this step,
an accurate classifier is required to separate correctly the examples. Given this re-
quirement, we propose a novel oblique random forest associated with PLS. The method
consists on utilize the PLS to find a decision surface at each node in a decision tree.
We compare the proposed method with the oblique random forest based on SVM. Our
experimental results demonstrated that a smaller forest is generated when using the
PLS instead SVM, which is ideal to such type of random forest since each decision
tree (that composes the forest) presents high computational cost. Besides, our method
achieved comparable state-of-the-art results, when compared with traditional classifiers
employed in the pedestrian detection.

The second one, it is associated with the computational cost required to pro-
vide a faster detection. Our experiments showed that a denser sampling induces to a
better detection. However, the computational cost increase proportionally. Aiming to
around this problem, we analyze several filtering approaches to quickly discard parts
of the image without losing relevant information to the pedestrian detection task. Our
experiments allowed us to perform a quantitative analysis on the number of detec-
tion windows rejected by the filtering stage. Furthermore, we demonstrated that each
detector has different behavior (miss rate) according to filter applied.

The last one, focuses on improving the detection using the high-level information
regarding the scene. To this end, we propose a novel approach to combine results
of distinct detectors. The method bases itself in using the responses coming from
multiple detectors to reinforce more consistent human hypothesis whereas reducing and
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discarding false positives. The proposed method outperforms the state-of-the-art in two
pedestrian detection benchmarks and achieves comparable results on the challenging
Caltech dataset. Furthermore, we demonstrated that with previous knowledge of the
domain, our method outperforms the most powerful detectors in each dataset.

5.1 Future Works

On the results showed in this work, we conclude that the most promising improvement
in the detection can be attributed to combination of detectors. This combination
outperforms the most powerful feature utilized to describe human samples, in terms
of differentiate it of hard false positives. Under this circumstance, as future work we
intend to explore others way to combine the detection coming from different detectors.
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